检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/cache/apex-master') 安装报错 “xxx.whl”文件无法安装,需要您按照如下步骤排查: 当出现“xxx.whl”文件无法安装,在启动文件中添加如下代码,查看当前pip命令支持的文件名和版本。 import pip print(pip.pep425tags.get_supported())
为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone
为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone
*}"”修改为“MASTER_ADDR="${MA_VJ_NAME}-${MA_TASK_NAME}-${MA_MASTER_INDEX}.${MA_VJ_NAME}"”。 在创建训练作业页面配置环境变量“ROUTE_PLAN”,取值为“true”,具体操作请参见管理训练容器环境变量。 代码示例 训练作业的启动脚本示例如下。
支持的format格式数据,当前支持obs、flavor、train_flavor、swr、pacific。 否 str delay 参数是否运行时输入,默认为“False”,在工作流启动运行前进行配置。设置为“True”,则在使用的相应节点运行时卡点配置。 否 bool description 参数描述信息。 否 str
文件。 Step2 修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练策略类型。
桶。 检查当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。 在左侧菜单栏选择“访问权限控制>桶ACL”,检查当前账号是否具备读写权限,如果没有权限,请联系桶的拥有者配置权限。 确保此OBS桶是非加密桶
使用llm-compressor工具量化Deepseek-v2系列模型 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vl
文件。 步骤二:修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。
文件。 步骤二:修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/AscendFactory/scripts_llamafactory/demo.yaml。修改详细步骤如下所示。
用户只创建了一个未标注完成的数据集,需要在工作流运行时对数据进行人工标注。 可以放在数据集导入节点之后,对导入的新数据进行人工标注。 数据准备:提前在ModelArts管理控制台创建一个数据集。 from modelarts import workflow as wf # 通过Labeli
文件。 步骤二 修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。
文件。 步骤二 修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。
_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/m
_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/m
_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/m
finetuning_type full 用于指定微调的类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 dataset identity,alpaca_en_demo 指定用于
GeneralInstructionHandler:使用微调的alpaca数据集; MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。
_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/m
文件。 Step2 修改训练yaml文件配置 LlamaFactroy配置文件为yaml文件,启动训练前需修改yaml配置文件,yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示: 选择指令微调类型