检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
设置为允许远程接入访问这个Notebook的IP地址(例如本地PC的IP地址或者访问机器的外网IP地址,最多配置5个,用英文逗号隔开),不设置则表示无接入IP地址限制。 如果用户使用的访问机器和ModelArts服务的网络有隔离,则访问机器的外网地址需要在主流搜索引擎中搜索“IP地
已购买的套餐包为什么不能使用? 已购买的套餐包不能使用包含以下几种情况: 购买套餐包的区域与使用区域不同。例如您在“华北-北京四”区域购买的套餐包,就只能在此区域使用。查看已购买套餐包区域可参见如何查看在哪个区域购买的套餐包?。 购买的套餐包不支持在此场景中使用。例如,您购买的套餐
源规格;例如在一个modelarts.vm.cpu.2u的Notebook中,部署本地Predictor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3
购买弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长收费。您也可以购买包年包月套餐,提前规划资源的使用额度和时长。在欠费时,您需要及时(15天之内)续费以避免您的文件系统资源被清空。SFS购买指导请参考如何购买弹性文件服务?。 购买容器镜像服务SWR 容器镜像服务分为企业版和共享版。
确定镜像来源 确认该自定义镜像的基础镜像是否来源于ModelArts提供的基础镜像,推荐用户使用ModelArts的基础镜像构建自定义镜像,具体请参见使用ModelArts的基础镜像构建新的训练镜像。 如镜像来源于第三方,设法找到自定义镜像的制作者咨询,制作者一般对镜像如何使用更加了解。 确定自定义镜像大小
创建模型时,如果是从OBS中导入元模型,则需要符合一定的模型包规范。 模型包规范适用于单模型场景,如果是多模型场景(例如含有多个模型文件)推荐使用自定义镜像方式。 ModelArts推理平台不支持的AI引擎,推荐使用自定义镜像方式。 请参考创建模型的自定义镜像规范和从0-1制作自定义镜像并创建模型,制作自定义镜像。
Lite Cluster Cluster资源池如何进行NCCl Test?
使用OBS导入元模型,会用到服务侧的标准镜像,标准镜像里面没有CV2依赖的so的内容。所以ModelArts不支持从对象存储服务(OBS)导入CV2模型包。 处理方法 需要您把CV2包制作为自定义镜像,上传至容器镜像服务(SWR),选择从容器镜像中导入元模型,部署在线服务。如何制作自定义镜像请参
常见问题 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
FAQ 使用ModelArts时提示“权限不足”,如何解决? 父主题: Standard权限管理
在Notebook中使用自定义镜像常见问题 不在同一个主账号下,如何使用他人的自定义镜像创建Notebook? 父主题: Standard Notebook
JupyterLab插件故障 git插件密码失效如何解决? 父主题: 开发环境(新版Notebook)
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,则不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用MaaS服务的功能。 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,
ModelArts的功能都需经过授权,可以更精确的控制子账号的权限范围,达成权限最小化的安全策略。 用工作空间限制资源访问 工作空间是ModelArts面向企业用户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。目前工作空
CUDA和CUDNN run.sh脚本测试ModelArts训练整体流程 ModelArts环境挂载目录说明 infiniband驱动的安装 如何保证训练和调试时文件路径保持一致 父主题: 专属资源池训练
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
资源池 创建资源池失败 Standard资源池节点故障定位 资源池推理服务一直初始化中如何解决 专属资源池关联SFS Turbo显示异常
其他故障 Notebook中无法打开“checkpoints”文件夹 创建新版Notebook无法使用已购买的专属资源池,如何解决? 在Notebook中使用tensorboard命令打开日志文件报错Permission denied 父主题: 开发环境
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上