检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能
、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发
RedisMessageHistory from langchain.memory import ConversationBufferWindowMemory # 定义存储策略 skill.set_memory(ConversationBufferWindowMemory(k=3, chat_memory=R
config.MemoryStoreConfig; import org.junit.jupiter.api.Assertions; // 定义存储策略 skill.setMemory(new ConversationBufferMemory(MemoryStoreConfig.builder()
登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 提示用例管理”。 图3 提示用例管理 单击页面右上角“创建提示用例集”,进入创建弹窗。 单击存储位置最右侧的图标,选择数据集文件所对应的obs路径,然后输入数据集名称、描述,创建数据集。 创建数据集前,请先将数据上传至OBS。 图4 创建数据集
kgBZQMEAgEwgguVBgkqhkiG... Request Body: { "prompt": "介绍下长江三峡", "temperature": 0.9, "stream": "true" } 响应示例 非流式 状态码: 200 OK {
Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。
将其加入用户组,并对用户组授权,才能使得用户组中的用户获得对应的权限。授权后,用户就可以基于被授予的权限对云服务进行操作。 服务使用OBS存储训练数据和评估数据,如果需要对OBS的访问权限进行细粒度的控制。可以在盘古服务的委托中增加Pangu OBSWriteOnly、Pangu
模型结果分析:查看各个模型此次评估任务的基于各个指标的评分情况,以及具体到某条数据的打分情况。 用户可以将此次的评估报告通过导出按钮全部导出至本地存储,文件导出格式为CSV。 图3 评估报告页面 评估日志: 平台支持查看本次模型评估任务的详细日志。选择评估的模型后,可以查看其从创建开始到
dir=/home/mind/model hilens.nfs.source.dir=/var/docker/hilens 其中,server.ip是nfs存储节点内网ip,mount.dir是大模型默认挂载路径,source.dir是大模型下载路径。 配置完成后,执行如下命令重启固件: systemctl
load() for doc in doc_list: print(doc.page_content) 向量库 向量库用于向量数据存储,提供向量数据检索能力。 初始化,以使用华为CSS示例。 from pangukitsappdev.api.memory.vector.factory
九寨沟、峨眉山等" //第二轮答案 }, { "content": "提到的湖南景点,详细说明下" //第三轮问题 } ], "temperature": 0.9, "max_tokens": 600 }
out.println(JSONObject.toJSONString(resp.getResult())); 向量库 向量库用于向量数据存储,并提供向量数据检索能力。 初始化,以使用华为CSS示例。 import com.huaweicloud.pangu.dev.sdk.api
向ToolRetriever中添加工具: // 添加工具 cssToolRetriever.addTools(toolList); 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。 从ToolRetriever中查找工具: // 查找工具 List<Tool> result =
slf4j.simpleLogger.showShortLogName=false 配置文件敏感信息加密配置 配置项中的密码等字段需要加密存储时,可以自定义实现解密方法。 实现解密类 // 配置类实现 public class CryptoCustom implements ConfigCryptor
向ToolRetriever中添加工具: # 添加工具 css_tool_retriever.add_tools(tool_list) 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。 从ToolRetriever中查找工具: # 查找工具 result = css_tool_retriever
准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单规则槽位泛化的真实业务场景数据。示例如下: 原始问题: 科技行业公司的平均利润和市值是多少? 识别原始问题中的槽位: 科技行业公司的[metric]利润和市值是多少?
扩写要保留以上内容全部信息,结合观众需求突出商品特点3.在结尾引导观众行动。要求口语化。需要300字。", "target": …} 问题三:存在重复数据。 删除重复数据。 略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: