检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:
相关章节 创建单机多卡的分布式训练(DataParallel):介绍单机多卡数据并行分布式训练原理和代码改造点。 创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
相应目录没有生成大小>0的日志文件,则对应的父级目录也不会上传。因此,PyTorch NPU的plog日志是按worker存储的,而不是按rank id存储的(这是区别于MindSpore的)。目前,PyTorch NPU并不依赖rank table file。 #!/bin/bash
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训练且支持CPU分布式和GPU分布式,将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需
train_instance_count:必选参数,训练使用的worker个数,分布式调测时为2,训练开始时SDK还会再创建一个Notebook,与当前的Notebook组成一个2节点的分布式调试环境。 script_interpreter:可选参数,指定使用哪个python
在ModelArts创建分布式训练时如何设置NCCL环境变量? ModelArts训练平台预置了部分NCCL环境变量,如表1所示。这些环境变量建议保持默认值。 表1 预置的环境变量 环境变量 说明 NCCL_SOCKET_IFNAME 指定通信的网卡名称。 NCCL_IB_GID_INDEX
如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。
在Lite Cluster资源池上使用Snt9B完成分布式训练任务 场景描述 本案例介绍如何在Snt9B上进行分布式训练任务,其中Cluster资源池已经默认安装volcano调度器,训练任务默认使用volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。
设置训练故障优雅退出 使用场景 随着模型规模和数据集的急剧增长,需要利用大规模的训练集训练大规模的神经网络。在大规模集群分布式训练时,会遇到集群中某个芯片、某台服务器故障,导致分布式训练任务失败。优雅退出是指中断的训练任务支持自动恢复,并可以在上一次训练中断的基础上继续训练,而不用从头开始。
错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50G,只有默认的10GB,导致作业训练失败。 实际存储空间足够,却依旧报错“No Space left on device”。
错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50GB,只有默认的10GB,导致作业训练失败。 实际存储空间足够,却依旧报错“No Space left on device”。
如果安装了libibverbs-dev库后仍然无法使能infiniband网卡,您可以直接安装infiniband官方驱动,以使用infiniband网卡进行分布式通信,提升训练性能。infiniband驱动需要在制作镜像时安装。 操作步骤 下载MLNX_OFED_LINUX-4.3-1.0.1.0-ubuntu16
使用OBS客户端上传文件的操作指导:上传文件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。
日志提示“no socket interface found” 问题现象 在pytorch镜像运行分布式作业时,设置NCCL日志级别,代码如下: import os os.environ["NCCL_DEBUG"] = "INFO" 会出现如下错误: job0879f61e-jo
什么是ModelArts ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模
什么是ModelArts ModelArts是华为云提供的一站式AI开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开