检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ZooKeeper基本原理 ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。 提供分布式协作服务和维护配置信息。 ZooKeeper结构 ZooKeeper集群中的节点分为三种
Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data Mining):在海量数据基础上进行复杂的挖掘分析,可支持各种数据挖掘和机器学习算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query An
S作业,完成MRS与其他20多种异构数据源之间的数据迁移和数据集成;通过强大的作业调度与灵活的监控告警,轻松管理数据作业运维。 目前MRS集群支持在线创建如下几种类型的作业: MapReduce:提供快速并行处理大量数据的能力,是一种分布式数据处理模式和执行环境,MRS支持提交MapReduce
、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需要
、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需要
ase组件提供一个稳定可靠,性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。 Kafka集群:Kafka集群使用Kafka和S
OpenTSDB简介 OpenTSDB是一个基于HBase的分布式、可伸缩的时间序列数据库。OpenTSDB的设计目标是用来采集大规模集群中的监控类信息,并可实现数据的秒级查询,解决海量监控类数据在普通数据库中查询存储的局限性。 OpenTSDB使用场景有如下几个特点: 采集指标
占用的代价。 ReplacingMergeTree表引擎数据查询,需要先做数据去重合并提升性能。 如果使用去重引擎进行数据查询,且使用argMax函数和final关键字,会导致整个查询性能较差,需要提前对重复数据做合并去重optimize操作,查询时候直接查询不需要使用argMa
可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需
Hive数据存储及加密配置 使用HDFS Colocation存储Hive表 配置Hive分区元数据冷热存储 Hive支持ZSTD压缩格式 使用ZSTD_JNI压缩算法压缩Hive ORC表 配置Hive列加密功能 父主题: 使用Hive
可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需
Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data Mining):在海量数据基础上进行复杂的挖掘分析,可支持各种数据挖掘和机器学习算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query A
Hive数据存储及加密配置 使用HDFS Colocation存储Hive表 配置Hive分区元数据冷热存储 Hive支持ZSTD压缩格式 配置Hive列加密功能 父主题: 使用Hive
为什么存储小文件过程中,缓存中的数据会丢失 问题 在存储小文件过程中,系统断电,缓存中的数据丢失。 回答 由于断电,当写操作完成之后,缓存中的block不会立即被写入磁盘,如果要同步地将缓存的block写入磁盘,用户需要将“客户端安装路径/HDFS/hadoop/etc/hadoop/hdfs-site
为什么存储小文件过程中,缓存中的数据会丢失 问题 在存储小文件过程中,系统断电,缓存中的数据丢失。 回答 由于断电,当写操作完成之后,缓存中的block不会立即被写入磁盘,如果要同步地将缓存的block写入磁盘,用户需要将“客户端安装路径/HDFS/hadoop/etc/hadoop/hdfs-site
当备NameNode存储元数据时,断电后备NameNode启动失败 问题 当Standby NameNode存储元数据(命名空间)时,出现断电的情况,Standby NameNode启动失败并发生如下错误信息。 回答 当Standby NameNode存储元数据(命名空间)时,出现断电的情况,Standby
数据保护技术 数据完整性 通过数据校验,保证数据在存储、传输过程中的数据完整性。 MRS的用户数据保存在HDFS中,HDFS默认采用CRC32C算法校验数据的正确性,同时也支持CRC32校验算法,CRC32C校验速度快于CRC32。HDFS的DataNode节点负责存储校验数据,
Hive元数据导出 Hive表数据存储在HDFS上,表数据及表数据的元数据由HDFS统一按数据目录进行迁移。而Hive表的元数据根据集群的不同配置,可以存储在不同类型的关系型数据库中(如MySQL、PostgreSQL、Oracle等)。 本指导中导出的Hive表元数据即存储在关系型数据库中的Hive表的描述信息。
从纵向来看,每个shard内部有多个副本组成,保证分片数据的高可靠性,以及计算的高可靠性。 数据分布设计 Shard数据分片均匀分布 建议用户的数据均匀分布到集群中的多个shard分片,如图1所示有3个分片。 假如有30 GB数据需要写入到集群中,需要将30 GB数据均匀切分后分别放到shard-1、s
同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client