检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MRS支持什么类型的分布式存储? 问: MRS集群支持什么类型的分布式存储?有哪些版本? 答: MRS集群内使用主流的大数据Hadoop,目前支持Hadoop 3.x版本,并且随集群演进更新版本。 同时MRS也支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式。
MRS存算分离配置流程说明 MRS支持在大数据存储容量大、计算资源需要弹性扩展的场景下,用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式,从而实现按需灵活扩展资源、低成本的海量数据分析方案。 大数据存算分离场景,请务必使用OBS并行文件系统(并行文件系统
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的hbase数据表。 开发思路 设置scan的规则,例如:setCaching。
key),可以是表中一列的原始数据(如did),也可以是函数调用的结果。 如轮训方式:rand(),表示在写入数据时直接将数据插入到分布式表,分布式表引擎会按轮训算法将数据发送到各个分片。 该键是写分布式表保证数据均匀分布在各分片的唯一方式。 规则 不建议写分布式表。 由于分布式表写数据是异步方式,
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的hbase数据表。 开发思路 设置scan的规则,例如:setCaching。
元数据管理 当创建MRS集群选择部署Hive和Ranger组件时,MRS提供多种元数据存储方式,您可以根据自身需要进行选择: 本地元数据:元数据存储于集群内的本地GaussDB中,当集群删除时元数据同时被删除,如需保存元数据,需提前前往数据库手动保存元数据。 外置数据连接:MRS
part过多,merge压力变大,甚至出现异常影响数据插入; 数据的一致性问题:数据先在分布式表写入节点的主机落盘,然后数据被异步地发送到本地表所在主机进行存储,中间没有一致性的校验,如果分布式表写入数据的主机出现异常,会存在数据丢失风险; 对于数据写分布式表和数据写本地表相比,分布式表数据写入性能也会变慢,单
Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据)、日志收集等大量数据的互联网服务的数据收集场景。
、低成本的数据存储能力。MRS可以直接处理OBS中的数据,客户可以基于OBS服务Web界面和OBS客户端对数据进行浏览、管理和使用,同时可以通过REST API接口方式单独或集成到业务程序进行管理和访问数据。 数据存储在OBS:数据存储和计算分离,集群存储成本低,存储量不受限制,
e-xxx.tar.gz 固定文件 MR分布式缓存功能使用的各jar包 否 MR分布式缓存功能无法使用 /user/hive 固定目录 Hive相关数据存储的默认路径,包含依赖的spark lib包和用户默认表数据存储位置等 否 用户数据丢失 /user/omm-bulkload
Hive ORC数据存储优化 操作场景 “ORC”是一种高效的列存储格式,在压缩比和读取效率上优于其他文件格式。 建议使用“ORC”作为Hive表默认的存储格式。 前提条件 已登录Hive客户端,具体操作请参见Hive客户端使用实践。 操作步骤 推荐:使用“SNAPPY”压缩,适用于压缩比和读取效率要求均衡场景。
Hive ORC数据存储优化 操作场景 “ORC”是一种高效的列存储格式,在压缩比和读取效率上优于其他文件格式。 建议使用“ORC”作为Hive表默认的存储格式。 前提条件 已登录Hive客户端,具体操作请参见Hive客户端使用实践。 操作步骤 推荐:使用“SNAPPY”压缩,适用于压缩比和读取效率要求均衡场景。
独立的。 同时ClickHouse依靠Distributed引擎实现了分布式表机制,在所有分片(本地表)上建立视图进行分布式查询,使用很方便。ClickHouse有数据分片(shard)的概念,这也是分布式存储的特点之一,即通过并行读写提高效率。 CPU架构为鲲鹏计算的Click
快速创建和使用HBase离线数据查询集群 操作场景 本入门提供从零开始创建HBase查询集群并通过集群客户端进行HBase表的创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,
ClickHouse写入分布式表时发送数据文件到远端分片失败 本章节仅适用于MRS 3.3.1及之后版本。 告警解释 ClickHouse实例分布式表检查模块300秒检查一次,如果连续失败的次数超过配置的阈值,则触发上报告警,此时ClickHouse写入分布式表的节点无法正常发送数据文件到远端分片节点。
适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。 快速购买MRS集群 进入购买MRS集群页面。 在购买集群页面,选择“快速购买”页签。 参考下列参数说明配置集群基本信息。
ALM-45435 ClickHouse表元数据不一致 告警解释 检测到分布式表本身,或分布式表对应的本地表的元数据不一致持续180min后,系统产生此告警。 当分布式表本身,或分布式表对应的本地表的元数据一致时,告警自动清除。 元数据一致包括: 表中各列的数量、名称、顺序、类型一致
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般