检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.910)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911)
自动诊断工具MA-Advisor简介 MA-Advisor是一款昇腾迁移性能问题自动诊断工具,当前支持如下场景的自动诊断: 推理场景下的子图数据调优分析,给出对应融合算子的调优建议。 推理、训练场景下对Profiling timeline单卡数据进行调优分析,给出相关亲和API替换的调优建议。
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
在Workflow中更新已部署的服务 场景介绍 大部分场景下的工作流都是第一次运行部署新服务,后续进行模型迭代时,需要对已部署的服务进行更新。因此需要在同一条工作流中,同时支持服务的部署及更新能力。 编写工作流 基于编写工作流代码示例的场景案例进行改造,代码编写示例如下: from
准备工作 准备环境 准备代码 准备数据 准备镜像环境 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.911)
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 Controlnet训练 父主题: AIGC模型训练推理
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)