检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表1。
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
调优前后性能对比 在完成上一章几类调优方式之后,在单卡场景下实测性能调优比对结果如下表所示: 设备 batch_size Steps/Sec 1p-GPU Ant8 16 3.17 1p-NPU snt9b 313T 16 2.17 1p-NPU snt9b 313T调优后 16
训练权重转换说明 以 llama2-13b 举例,使用训练作业运行 obs_pipeline.sh 脚本后,脚本自动执行权重转换,并检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备W8A8权重 前提条件 已完成准备BF16权重。 W8A8量化权重生成 介绍如何将BF16权重量化为W8A8的权重,具体操作步骤如下。 在Server机器上创建权重量化后的存放目录${path-to-file}/deepseekV3-w8a8或${path-to-file}/deepseekR1-w8a8目录。
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。