检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在创建Notebook的“子目录挂载”路径。若默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
"system": "系统提示词(选填)", "tools": "工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在创建Notebook的“子目录挂载”路径。若默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Abnormal:网络连接不正常 表15 sfsTurboStatus 参数 参数类型 描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常
Call to connect returned Connection refused, retrying”,则表示NCCL无法找到通信网卡或者是无法正常访问IP地址。需要排查训练代码中是否有设置NCCL_SOCKET_IFNAME环境变量,该环境变量由系统自动注入,训练代码中无需设置。
"system": "系统提示词(选填)", "tools": "工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。
因为OOM导致的训练作业失败,会有如下几种现象。 错误码返回137,如下图所示。 Modelarts Service Log Trainina end with return code: 137 Modelarts Service Log]handle outputs of training job 日志中有
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
Abnormal:网络连接不正常 表12 sfsTurboStatus 参数 参数类型 描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常
ROOT_PATH = os.getenv('ROOT_PATH') //获取服务根路径 def greet(name): return "Hello " + name + "!" with gr.Blocks() as demo: name = gr.Textbox(label="Name")
本文旨在指导客户将已有的推理业务迁移到昇腾设备上运行(单机单卡、单机多卡),并获得更好的推理性能收益。 ModelArts针对上述使用场景,在给出系统化推理业务昇腾迁移方案的基础上,提供了即开即用的云上集成开发环境,包含迁移所需要的算力资源和工具链,以及具体的Notebook代码运行示例
) return torch._C._cuda_getDeviceCount() > 0 False 原因分析 Error 802原因为缺少fabricmanager,可能由于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。