检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Code环境访问Notebook的方式。 前提条件 已下载并安装VS Code。详细操作请参考安装VS Code软件。 用户本地PC或服务器的操作系统中建议先安装Python环境,详见VSCode官方指导。 创建一个Notebook实例,并开启远程SSH开发。该实例状态必须处于“运行中
ing框架、Triton框架为例,介绍如何迁移到推理自定义引擎。 TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP
ignore 系统已自动过跳过这张图片,不需要用户处理。 2 tf-decode failed 图片无法被TensorFlow解码且不能修复 ignore 系统已跳过这张图片,不需要用户处理。 3 size over 图片大于5MB resize to small 系统已将图片压缩到5MB以内处理,不需要用户处理。
Error 802原因为缺少fabricmanager,可能由于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。
exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以通过查看模型详情看到配置的系统运行架构。基础镜像的系统架构详情可以参考推理基础镜像列表。 父主题: 模型管理
重新进行安装需要的版本。 import os os.system("pip uninstall -y numpy") os.system('rm -rf /home/work/anaconda/lib/python3.6/site-packages/numpy/') os.system("pip
A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA initialization:
当裸金属服务器预置的NVIDIA版本和业务需求不匹配时,需要更换NVIDIA驱动和CUDA版本。本文介绍华为云A系列GPU裸金属服务器(Ubuntu20.04系统)如何从“NVIDIA 525+CUDA 12.0”更换为“NVIDIA 515+CUDA 11.7”。 操作步骤 卸载原有版本的NVIDIA和CUDA。
path”中,再导入: import os import sys # __file__为获取当前执行脚本main.py的绝对路径 # os.path.dirname(__file__)获取main.py的父目录,即project_dir的绝对路径 current_path = os.path.dirname(__file__)
Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统,详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用
Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统,详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用
数据未保存至/cache目录或者/home/ma-user/目录(/cache会软连接成/home/ma-user/),导致数据占满系统目录。系统目录仅支持系统功能基本运行,无法支持大数据存储。 部分训练任务会在训练过程中生成checkpoint文件,并进行更新。如更新过程中,未删除历
epoch } if not os.path.isdir(train_url): os.makedirs(train_url) torch.save(checkpoint, os.path.join(train_url, 'ckpt_best_{}
Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在训练作业启动前,自动将存储位置中的文件目录挂载到训练容器中指定路径。 图2 设置训练“SFS Turbo” 当前训练作业支持挂载多个弹性文件服务SFS Turbo,文件系统支持重复挂载
2/use/downloads.html 需要下载的安装包与操作系统有关,请根据需要选择合适的安装包。 如果操作系统为Linux aarch64,请下载mindspore-lite-2.2.10-linux-aarch64.tar.gz。 如果操作系统为Linux x86_64,请下载mindspore-lite-2
"nodeNames" : [ "os-node-created-vrvrq", "os-node-created-4jczv" ] } 响应示例 状态码:200 OK。 { "nodeNames" : [ "os-node-created-vrvrq", "os-node-created-4jczv"
参数类型 描述 os.modelarts/billing.mode 否 String 计费模式,可选值如下: 0:按需计费 1:包周期计费 os.modelarts/period.num 否 String 包周期订购周期,比如2。当计费模式为包周期时该参数必传。 os.modelarts/period
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题
Library)环境变量 OBS环境变量 PIP源环境变量 API网关地址环境变量 作业元信息环境变量 约束限制 为了避免新设置的环境变量与系统环境变量冲突,而引起作业运行异常或失败,请在定义自定义环境变量时,不要使用“MA_”开头的名称。 如何修改环境变量 用户可以在创建训练作业
on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker size大小时,会提示镜像内空间不足。 处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker