检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
loss收敛情况:日志里存在lm loss参数 ,lm loss的值随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行微调训练任务 查看日志和性能 训练脚本说明 附录:微调训练常见问题 父主题: LLM大语言模型训练推理
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
├── system_error.xlsx # 保存推理结果,但是可能答非所问,无法判断是否正确,需要人工判断进行纠偏。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905)
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.908)
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
#昇腾vLLM使用的算子模块 ├── ascend.txt #基于开源vLLM适配过NPU的patch脚本 ├── autosmoothquant_ascend.txt #基于开源autosmoothquant适配过NPU的patch脚本
PP-xxx.zip到容器中,包获取路径请参见表1。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggface格式。开源权重文件获取地址请参见表3。 Step4 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。 docker run -itd
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录M
脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图4 动态benchmark测试结果(示意图) 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
zip到主机中,包获取路径请参见表2。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,需要上传训练后的权重文件和开源的原始权重文件。模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。
#构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型(PyTorch)基于DevServer训练指导。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907)
-46.6) < 1)认为NPU精度和GPU对齐。NPU和GPU的评分结果和社区的评分不能差太远(小于10)认为分数有效。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907)
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。