检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古NLP大模型应用开发 开发盘古大模型提示词工程 辅助用户进行提示词撰写、比较和评估等操作,并对提示词进行保存和管理。 开发盘古大模型提示词工程 开发盘古大模型Agent应用 基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
Agent开发平台介绍 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建
Agent开发 应用 工作流 父主题: API
数据发布介绍 ModelArts Studio大模型开发平台提供的数据发布功能涵盖数据评估、数据配比和数据流通操作,旨在通过数据质量评估和合理的比例组合,确保数据满足大模型训练的多样性、平衡性和代表性需求,促进数据的高效流通和应用。 数据发布不仅包括将数据发布为适合使用的格式,还
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建预测大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
开发盘古专业大模型 部署专业大模型
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称
管理知识库 Agent开发平台支持对知识库执行获取知识库ID、删除、命中测试操作。 新增、删除知识库中知识文档 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建CV大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称
开发盘古CV大模型 使用数据工程构建CV大模型数据集 训练CV大模型 部署CV大模型
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建NLP大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。 框重叠比例阈值 用于判定模型预测的边界
常能够实现最佳的模型性能,但需要消耗大量计算资源和时间,计算开销较大。 基础模型 选择全量微调所用的基础模型, 可从“已发布模型”或“未发布模型”中进行选择。 高级设置 checkpoints:在模型训练过程中,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoin