检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
python -c "import torch;print(torch.__version__)" 通过pytorch官网可查兼容版本:https://pytorch.org/get-started/previous-versions/ 如果环境中装了多版本的cuda,可以排查LD
pt4_data.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
t字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
t字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
t字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4
克隆ModelArts Ascend代码库。 新建Terminal,执行下述命令将对应的repo克隆到Notebook实例。 git clone https://gitee.com/ModelArts/modelarts-ascend.git 图1 下载示例代码 昇腾迁移案例在“~/work
json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
py,替换原来权重里的tokenization_chatglm.py。 https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py https://huggingface.co/THUDM/chatg
本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 框架 1 Qwen-VL 7b https://huggingface.co/Qwen/Qwen-VL-Chat DeepSpeed 操作流程 图1 操作流程图 表2 操作任务流程说明
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
py,替换原来权重里的tokenization_chatglm.py。 https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py https://huggingface.co/THUDM/chatg
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
载后的文件如图2所示,代码所在路径为“./models/official/cv/resnet/”。 # 下载代码 git clone https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。
EOUT:图片下载时间环境变量。 VLLM_ENGINE_ITERATION_TIMEOUT_S:服务间隔最大时长,超过会报timeout错误。 PYTORCH_NPU_ALLOC_CONF=expandable_segments:True;允许分配器最初创建一个段,然后在以后需
py,替换原来权重里的tokenization_chatglm.py。 https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py https://huggingface.co/THUDM/chatg
ata.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data