检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
典型问题 在构建和运行多语言文本翻译工作流时,可能会遇到的常见典型问题如下: 问题一:文本翻译插件运行失败,报错信息如图1。 图1 文本翻译插件运行失败 可能原因:调用文本翻译API的Token错误或失效。 解决方法:参考创建多语言文本翻译插件,重新获取Token并进行试运行。 问题二
创建多语言文本翻译插件 准备工作 提前开通“文本翻译”服务。登录自然语言处理控制台,切换区域至华北-北京四,在“总览”页面下方开通“文本翻译”服务。 图1 开通文本翻译服务 操作流程 创建多语言文本翻译插件的流程见表1。 表1 创建多语言文本翻译插件流程 操作步骤 说明 步骤1:获取文本翻译服务
方案设计 虽然传统人工翻译可以提供高质量的结果,但其效率较低且成本高昂。相对而言,机器翻译虽然在速度和成本上具备优势,但在准确性和语境理解上仍存在一定的不足,例如,处理复杂、专业的内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译
构建流程 准备工作 为确保有可用的NLP大模型,请先完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 操作流程 创建盘古多语言文本翻译工作流的流程见表
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:从工作流响应准确性维度看
附录 创建多语言文本翻译插件 父主题: 低代码构建多语言文本翻译工作流
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度
准备工作 注册华为账号并开通华为云,并完成实名认证,账号不能处于欠费或冻结状态。 检查开发环境要求,确认本地已具备开发环境。 登录“我的凭证 > 访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv
Agent开发常见报错与解决方案 工作流常见错误码与解决方案 工作流常见报错及解决方案请详见表1。 表1 工作流节点常见报错与解决方案 模块名称 错误码 错误描述 解决方案 开始节点 101501 开始节点全局配置未传入值。 开始节点错误,请联系客服解决。 结束节点 101531
应用介绍 在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装