检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAIN_ITERS//SAVE_INTERVAL+1
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
/ascendcloud_patch/models/falcon2目录下: cd /home/ma-user/ws/llm_train/AscendFactory/src/acs_train_solution/ascendcloud_patch/models/falcon2 复制config.js
0_pl_pretrain_70b.sh 和 0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH
py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --
parallel size)=2 PP(pipeline model parallel size)=4 1*节点 & 8*Ascend 16 Baichuan2 baichuan2-13b SEQ_LEN=4096 TP(tensor model parallel size)=8 PP(pipeline
数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/finetune/moss_LossCompare.jsonl
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --
ECS获取和上传基础镜像 Step1 创建镜像组织 在SWR服务页面创建镜像组织。 图1 创建镜像组织 Step2 登录ECS服务器 根据创建ECS服务器创建完成ECS服务器后,单击“远程登录”,可使用华为CloudShell远程登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。
的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging
qwen-vl.patch的方式进行NPU适配,最后将以上源码和环境打包至镜像中。 AscendCloud-AIGC-6.3.912-xxx ├─aigc_inference ├─aigc_train ├─AscendCloud-Pytorch-Plugin └─multimodal_algorithm
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
e-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二:权重格式离线转换(可选) 在GPU上AutoAWQ量
per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs
er/ws/xxx-Ascend/llm_train/AscendSpeed/AscendSpeed export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink