检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(MySQL、PostgreSQL...)间进行数据的传递,可以将一个关系型数据库(例如:MySQL、Oracle、PostgreSQL等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
或无法实现的应用。 Kudu的应用场景有: 需要最终用户立即使用新到达数据的报告型应用 同时支持大量历史数据查询和细粒度查询的时序应用 使用预测模型并基于所有历史数据定期刷新预测模型来做出实时决策的应用 Kudu与其他组件的关系 Kudu与HBase的关系: Kudu的设计参考了
Impala的紧密集成,使其成为将HDFS与Apache Parquet结合使用的更好选择。 提供强大而灵活的一致性模型,允许您根据每个请求选择一致性要求,包括用于严格可序列化的一致性的选项。 提供同时运行顺序读写和随机读写的良好性能。 易于管理。 高可用性。Master和TServ
、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不
Impala的紧密集成,使其成为将HDFS与Apache Parquet结合使用的更好选择。 提供强大而灵活的一致性模型,允许您根据每个请求选择一致性要求,包括用于严格可序列化的一致性的选项。 提供同时运行顺序读写和随机读写的良好性能。 易于管理。 高可用性。Master和TServ
大数据组件都有自己的WebUI页面管理自身系统,但是由于网络隔离的原因,用户并不能很简便地访问到该页面。 例如访问HDFS的WebUI页面,传统的操作方法是需要用户创建ECS,使用ECS远程登录组件的UI,这使得组件的页面UI访问很是繁琐,对于很多初次接触大数据的用户很不友好。 M
Doris连接运行规范 连接Doris和运行Doris任务时需遵循的规范如下: 推荐使用ELB连接Doris,避免当连接的FE故障时,无法对外提供服务。 当Doris单实例或硬件故障时,新提交的任务能运行成功,但不能确保故障时正在运行的任务能执行成功。因此,需要用户连接Doris
配置Hive单表动态视图的访问控制权限 操作场景 MRS安全模式下Hive可以创建一个视图并控制用户访问权限,支持授权给不同的用户访问,又可以限定不同用户只能访问的不同数据。 在视图中,Hive可以通过获取当前客户端提交任务的用户的内置函数“current_user()”来进行过
配置Hive单表动态视图的访问控制权限 操作场景 MRS中安全模式下Hive可以创建一个视图并控制用户访问权限,支持授权给不同的用户访问,又可以限定不同用户只能访问的不同数据。 在视图中,Hive可以通过获取当前客户端提交任务的用户的内置函数“current_user()”来进行
Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据)、日志收集等大量数据的互联网服务的数据收集场景。
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需
、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不
、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不
Flume角色)的服务端和客户端参数,使其可以正常工作。 本章节适用于MRS 3.x及之后版本。 前提条件 已成功安装集群及Flume服务。 操作步骤 分别生成Flume角色服务端和客户端的证书和信任列表。 使用ECM远程以omm用户登录将要安装Flume服务端的节点。进入“${
Native引擎是通过使用向量化的C++加速库,实现对Spark算子性能加速的一种技术方案。传统的SparkSQL是基于行式数据,通过JVM的codegen来实现查询加速的,由于JVM对生成的java代码存在各种约束,比如方法长度,参数个数等,以及行式数据对内存带宽的利用率不足,因此存在性
使用Hive的时候,在输入框中输入了use database的语句切换数据库,重新在输入框内输入其他语句,为什么数据库没有切换过去? 回答 在Hue上使用Hive有区别于用Hive客户端使用Hive,Hue界面上有选择数据库的按钮,当前SQL执行的数据库以界面上显示的数据库为准。
处理和数据库应用有广泛而深刻的理解和认识,才能在调优过程中找到关键瓶颈点,解决性能问题。 图1 调优流程 表1 调优流程说明 流程 描述 系统调优 对OS操作系统级参数和数据库的调优,充分地利用主机的CPU、内存、I/O和网络资源,提升整个系统查询的吞吐量,同时数据库参数也调整到最优状态。
功能后,Hive将支持创建超过32个角色。 开启本功能并对表库等授权后,对表库目录具有相同权限的角色将会用“|”合并。查询acl权限时,将显示合并后的结果,与开启该功能前的显示会有区别。此操作不可逆,请充分考虑实际应用场景,再决定是否做出调整。 MRS3.x及后续版本支持Rang
每个消息体(记录)之间的分隔符。 kafka_schema 否 如果解析格式需要一个schema时,此参数必填。 kafka_num_consumers 否 单个表的消费者数量。默认值是:1,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过topic中分区的数量,因为每个分区只能分配一个消费者。