检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
Tez是Apache最新的支持DAG(有向无环图)作业的开源计算框架,它可以将多个有依赖的作业转换为一个作业从而大幅提升DAG作业的性能。 MRS将Tez作为Hive的默认执行引擎,执行效率远远超过原先的MapReduce的计算引擎。 有关Tez的详细说明,请参见:https://tez
Flink应用性能调优建议 配置内存 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
在Core节点组中勾选任意一个Core节点,单击“节点操作 > 停止所有角色”。 登录Core节点后台,参考如何使用自动化工具配置华为云镜像源(x86_64和ARM)?配置yum源。 使用uname -r或rpm -qa |grep kernel命令,查询并记录当前节点内核版本。
HDFS接口进行的。 Hive与MapReduce组件的关系 Hive的数据计算依赖于MapReduce。MapReduce也是Apache的Hadoop项目的子项目,它是一个基于Hadoop HDFS分布式并行计算框架。Hive进行数据分析时,会将用户提交的HQL语句解析成相应的Ma
下载MRS集群用户认证凭据文件 用户开发大数据应用程序并在支持Kerberos认证的MRS集群中运行程序时,需要准备访问MRS集群的用户认证文件。认证文件中的keytab文件可用于认证用户身份。 该任务指导管理员用户通过Manager下载用户认证文件并导出keytab文件。 修改
集群启动Yarn后产生大量作业占用资源 问题现象 MRS 2.x及之前版本集群,用户的MRS集群启动Yarn后产生大量作业,占用集群计算资源。 原因分析 集群安全组入口方向的Any协议源地址配置为0.0.0.0/0,导致集群可能遭受了外部网络攻击。 处理步骤 登录MRS集群页面,
查询主机列表 功能介绍 该接口用于查询输入集群的主机列表详情。 接口约束 无 调用方法 请参见如何调用API。 URI GET /v1.1/{project_id}/clusters/{cluster_id}/hosts 表1 路径参数 参数 是否必选 参数类型 描述 cluster_id
为什么主NameNode重启后系统出现双备现象 问题 为什么主NameNode重启后系统出现双备现象? 出现该问题时,查看ZooKeeper和ZKFC的日志,发现ZooKeeper服务端与客户端(ZKFC)通信时所使用的session不一致,ZooKeeper服务端的sessio
创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。
能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C
Spark与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
种SQL-like的语言,相对于SQL,CQL中增加了(时序)窗口的概念,将待处理的数据保存在内存中,进行快速的内存计算,CQL的输出结果为数据流在某一时刻的计算结果。使用CQL,可以快速进行业务开发,并方便地将业务提交到Storm平台开启实时数据的接收、处理及结果输出;并可以在合适的时候中止业务。
将高频访问的SQL查询和有高耗时的算子(连接, 聚合等算子)的SQL通过建立物化视图进行预计算,然后在查询的SQL中将能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。
Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景
b=xxx 原因分析 按照设定,任务应该只扫描b=xxx的分区,但是查看任务日志可以发现,实际上任务却扫描了所有的分区再来计算b=xxx的数据,因此任务计算的很慢。并且因为需要扫描所有文件,会有大量的OBS请求发送。 MRS默认开启基于分区统计信息的执行计划优化,相当于自动执行Analyze
子来实现底层的计算。 Take算子会以Partition为单位多次触发计算。 在该问题中,由于Shuffle操作,导致take算子默认有两个Partition,Spark首先计算第一个Partition,但由于没有数据输入,导致获取结果不足10个,从而触发第二次计算,因此会出现RDD的DAG结构打印两次的现象。
Spark2x与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
子来实现底层的计算。 Take算子会以Partition为单位多次触发计算。 在该问题中,由于Shuffle操作,导致take算子默认有两个Partition,Spark首先计算第一个Partition,但由于没有数据输入,导致获取结果不足10个,从而触发第二次计算,因此会出现RDD的DAG结构打印两次的现象。