检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计算规格说明 AI Gallery提供了多种计算规格供用户按需选用。只要用户的账号费用充足,就可以持续使用资源,详细计费说明请参见计费说明。 计费说明 AI Gallery的计费规则如表1所示。 表1 计费说明 规则 说明 话单上报规则 仅当AI Gallery工具链服务创建成功
当前裸金属服务器状态为停止状态。 目标操作系统必须是该Region下的IMS公共镜像或者私有共享镜像。 在BMS控制台切换操作系统 获取操作系统镜像。 由华为云官方提供给客户操作系统镜像,在IMS镜像服务的共享镜像处进行接收即可,参考如下图操作。 图1 共享镜像 切换操作系统。 对Lite Serv
第一条命令为安装Linux内核头文件和内核镜像,其中版本为5.4.0-144-generic。 第二条命令为重新生成GRUB引导程序的配置文件,用于在启动计算机时加载操作系统, 命令将使用新安装的内核镜像更新GRUB的配置文件,以便在下次启动时加载新的内核。 父主题: Lite Server
在ModelArts进行模型训练时,会产生计算资源和存储资源的累计值计费。计算资源为训练作业运行的费用。存储资源包括数据存储到OBS或SFS的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
实例时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 Notebook实例停止运行时,EVS还会持续计费,需及时删除才能停止EVS计费。 计算资源费用: 如果运行Notebook实例时,使用专属资源池进行模型训练和推理,计算资源不计费。 如
32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.50 元/小时)。按照计算资源费用、存储费用结算,那么运行这个自动学习作业的费用计算过程如下: 计算资源费用 = 规格单价 * 计算节点个数
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不足,无法与云端相比。在此情况下,通过在靠近终端设备的地方建立边缘节点,将云端计算能力延伸到靠近终端设备的边缘节点,从而解决上述问题。
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 PD分离部署场景下,大模型推
lArts的资源类型选择授权范围。详细的资源权限项可以参见API参考中的权限策略和授权项章节。 委托授权 为了完成AI计算的各种操作,ModelArts在AI计算任务执行过程中需要访问用户的其他服务,例如训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了Mode
中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。 首先通过在PyTorch训练脚本中插入dump接口,跟踪计算图中算子的
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
是需要先将用户加入用户组,再面向用户组赋权),可以参考IAM的文档《权限管理》。 而ModelArts还有一个特殊的地方在于,为了完成AI计算的各种操作,AI平台在任务执行过程中需要访问用户的其他服务,典型的就是训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了
rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时。基于该表格,通常关注计算耗时(compute)和空闲耗时(free)这两列,可以初步分析当前瓶颈点是计算还是任务下发,以及是否存在计算快慢卡和下发快慢卡。如下图所示,可以看到8号卡的计算耗时明显大于其他卡,因此8号卡的
) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MRS服务下查看自己账号下可用的MRS集群,如果没有,
速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“实例数”。 如果实例数设置为1,表示后台的计算模式是单机模式;如果实例数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。 推理速度与模型复杂度强相关,您可以尝试优化模型提高预测速度。 Mo
运行模型需要的环境变量键值对,可选填,默认为空。为确保您的数据安全,在环境变量中,请勿输入敏感信息。 instance_count Integer 模型部署的实例数,即计算节点的个数。 model_id String 模型ID。 specification String 在线服务的资源规格。详见部署服务 weight