检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
condition 系统当前指标取值满足自定义的告警设置条件。 对系统的影响 OBS元数据接口调用平均时间超过阈值,会影响上层大数据计算业务的性能,导致某些计算任务的执行时间超过阈值。 可能原因 OBS服务端出现卡顿,或OBS客户端到OBS服务端之间的网络不稳定。 处理步骤 检查堆内存使用率。
配置MRS集群通过IAM委托对接OBS MRS支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算模式。MRS通过IAM服务的“委托”机制进行简单配置, 实现使用ECS自动获取的临时AK/SK访问OBS。避免了AK/SK直接暴露在配置文件中的风险。 通过绑定委托
Hive常用配置参数 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。 本章节主要介绍Hive常用参数。 操作步骤 登录FusionInsight Manager,选择“集群 > 服务 > Hive
有类型的RDD操作(比如map、filter、flatMap)。 支持基于Event Time的聚合计算,支持对迟到数据的处理。 支持对流式数据的去除重复数据操作。 支持状态计算。 支持对流处理任务的监控。 支持批流join,流流join。 当前JOIN操作支持列表如下: 左表 右表
有类型的RDD操作(比如map、filter、flatMap)。 支持基于Event Time的聚合计算,支持对迟到数据的处理。 支持对流式数据的去除重复数据操作。 支持状态计算。 支持对流处理任务的监控。 支持批流join,流流join。 当前JOIN操作支持列表如下: 左表 右表
有类型的RDD操作(比如map、filter、flatMap)。 支持基于Event Time的聚合计算,支持对迟到数据的处理。 支持对流式数据的去除重复数据操作。 支持状态计算。 支持对流处理任务的监控。 支持批流join,流流join。 当前JOIN操作支持列表如下: 左表 右表
condition 系统当前指标取值满足自定义的告警设置条件。 对系统的影响 OBS元数据接口调用成功率小于阈值,会影响上层大数据计算业务的正常执行,导致某些计算任务的执行失败。 可能原因 OBS服务端出现执行异常或严重超时。 处理步骤 检查堆内存使用率。 在FusionInsight
有类型的RDD操作(比如map、filter、flatMap)。 支持基于Event Time的聚合计算,支持对迟到数据的处理。 支持对流式数据的去除重复数据操作。 支持状态计算。 支持对流处理任务的监控。 支持批流join,流流join。 当前JOIN操作支持列表如下: 左表 右表
作为存储引擎,通常情况下Kudu会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
针对传统存算一体大数据架构中扩容困难、资源利用率低等问题,MRS采用计算存储分离架构,存储基于公有云对象存储实现11个9的高可靠,无限容量,支撑企业数据量持续增长;计算资源支持0~N弹性扩缩,百节点快速发放。存算分离后,计算节点可实现真正的极致弹性伸缩;数据存储部分基于OBS的跨AZ等
配置内存 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-defaults
修复隔离MRS集群主机补丁 若集群中存在主机被隔离的情况,集群补丁安装完成后,请参见本节操作对隔离主机进行补丁修复。修复完成后,被隔离的主机节点版本将与其他未被隔离的主机节点一致。 MRS 3.x版本不支持在管理控制台执行本章节操作,本章节仅适用于3.x之前的版本。 访问MRS
在Core节点组中勾选任意一个Core节点,单击“节点操作 > 停止所有角色”。 登录Core节点后台,参考如何使用自动化工具配置华为云镜像源(x86_64和ARM)?配置yum源。 使用uname -r或rpm -qa |grep kernel命令,查询并记录当前节点内核版本。
式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark使用in-memory的计算方式,通过这种方式来避免一个MapReduce工作流中的多个任务对同一个数据集进行计算时的IO瓶颈。Spark利用Scala
Spark Core内存调优 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
HDFS接口进行的。 Hive与MapReduce组件的关系 Hive的数据计算依赖于MapReduce。MapReduce也是Apache的Hadoop项目的子项目,它是一个基于Hadoop HDFS分布式并行计算框架。Hive进行数据分析时,会将用户提交的HQL语句解析成相应的Ma
Spark Core内存调优 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default