检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表1 标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。 启用时,可以指定参与标注的人员及标注数量。
LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。
填写请求Header参数。 参数名为Content-Type,参数值为application/json。 参数名为X-Auth-Token,参数值为步骤1中获取的Token值。 参数名为stream,参数值为true。当前应用仅支持流式调用。
- 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
INT8:该压缩策略将模型参数压缩至8位字节,可以有效降低推理显存占用。 INT4:该压缩策略与INT8相比,可以进一步减少模型的存储空间和计算复杂度。 配置资源。选择计费模式并设置训练单元。 可选择开启订阅提醒。
在重训配置参数时,您可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。
表1 标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。 启用时,可以指定参与标注的人员及标注数量。
物体检测-N模型为中参数量模型,在保证计算效率的同时,具备较强的特征识别能力,提供高效的性能表现。 父主题: 训练CV大模型
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。
调试应用的步骤如下: 在页面右上角单击,参考表2配置大模型参数。 表2 大模型参数配置 参数 说明 模型选择 选择要使用的大模型,不同的模型效果存在差异。 该模型需提前部署,步骤请参见创建NLP大模型部署任务。 模式选择 用于配置大模型的输出多样性。
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。
在右侧“清洗步骤编排”页面配置各算子参数,可拖动右侧“”以调整算子执行顺序。 图1 算子编排 在编排过程中,可单击右上角“保存为新模板”将当前编排流程保存为模板。后续创建新的数据清洗任务时,可直接单击“选择加工模板”进行使用。 若选择使用加工模板,将删除当前已编排的清洗步骤。
微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于利用少量的特定任务数据,使模型的表现从通用性向具体任务需求过渡。 使用小规模的特定任务数据:微调通常需要小规模但高质量的标注数据,直接与目标任务相关。
更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码? 如何判断盘古大模型训练状态是否正常? 数据量和质量均满足要求,为什么盘古大模型微调效果不好?
提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决于模型能力及提示词质量。
平台还支持实时调整模型参数,以便更好地满足用户需求。 支持区域: 西南-贵阳一 使用盘古预置NLP大模型进行文本对话 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。
提示词比较 提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。
传统的AI开发模式需要对每种目标类别单独采集数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,将数据标注、模型训练、部署上线等繁杂的流程固化为一个流水线的步骤。
调试应用的步骤如下: 在页面右上角单击,参考图5配置大模型参数。 图5 大模型配置 在“预览调试”的左下角,选择开启“代码解释器”。 在“预览调试”的下方文本框中输入对话,例如“请编写输出10以内的素数的Python代码”,应用将根据对话生成相应的回答。 图6 预览调试结果