检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
=, >, >=, <, <=; 集合运算:IN, NOTIN; 判断左值(标签、id、属性值)是否在右值(必须是array类型)中,和内存版的左值和右值是否有交集的语义有区别。 不支持CONTAIN、NOTCONTAIN、SUBSET等集合运算。
louvain算法(louvain) 功能介绍 根据输入参数,执行Louvain算法。 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 URI POST /ges/v1.0/{project_id
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0
infomap算法(infomap) 功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges
标签传播(label_propagation)(2.1.8) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 convergence 否 收敛精度。 Double 0~1,不包括0和1。 0.00001 max_iterations 否 最大迭代次数
紧密中心度算法(closeness) 功能介绍 根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/hyg
Cesna算法(cesna) 功能介绍 根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的
连通分量(connected_component)(1.0.0) 当前该算法不需要输入parameters参数就可以运行。 表1 response_data参数说明 参数 类型 说明 Max_WCC_size Integer 最大连通分量中节点的个数 Max_WCC_id String
OD中介中心度(od_betweenness)(2.2.4) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向 Boolean true或者false true weight 否 边上权重 String 空或字符串
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_id
最短路径(shortest_path) 功能介绍 根据输入参数,执行最短路径算法。 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
子图匹配算法(subgraph matching) 功能介绍 根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。
单源最短路算法(sssp) 功能介绍 根据输入参数,执行单源最短路算法。 单源最短路算法是对于给定一个节点(称为源),给出从该源节点出发到其余各节点的最短路径长度。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
全最短路(all_shortest_paths) 功能介绍 根据输入参数,执行全最短路算法。 全最短路(all_shortest_paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间所有的最短路径。 URI POST /ges/v1.0/{project_id}
OD中介中心度(od_betweenness) 功能介绍 根据输入参数,执行OD中介中心度算法。 OD中介中心度算法(od_betweenness)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 URI POST /ges/v1.0/{project_id
标签传播算法(label_propagation) 功能介绍 根据输入参数,执行label_propagation算法。 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图
边中介中心度(edge_betweenness) 功能介绍 根据输入参数,执行边中介中心度算法。 边中介中心度算法(edge_betweenness)以经过某条边的最短路径数目来刻画边重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
连通分量(connected_component) 功能介绍 根据输入参数,执行连通分量(Connected Component)算法。 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量
关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数