检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
存在兼容性问题。 Safari L2 macOS 10+ 部分兼容。 能确保基本交互操作,但在视觉、交互效果上可能存在兼容性问题。 表2 移动端浏览器兼容性一览表 浏览器类型 版本 操作系统 兼容性 Chrome L3 Android 完全兼容。 Safari L3 IOS 完全兼容。
config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行
config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行
config文件 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行
在Stable Diffusion迁移适配时,更多的时候是在适配Diffusers和Stable Diffusion WebUI,使其能够在昇腾的设备上运行。其中,Diffusers遵循了Huggingface的“single-file policy”的设计原则,它的三个主要模块Pipe
2312-aarch64-snt9b-20240528150158-b521cc0 SWR上拉取 约束限制 本文档适配昇腾云ModelArts 6.3.905版本,请参考表2获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 Lora训练使用单机单卡资源。 确保容器可以访问公网。 Step1
254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
r.mindir --device=Ascend 上述命令中:modelFile指定生成的mindir模型文件;device指定运行推理的设备。其他用法请参考benchmark文档。 测试结果如下所示: 图1 测试结果 父主题: 性能调优
获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目录中。代码目录结构如下。精度测试使用到的mmlu和ceval数据集已经提前打包在代码中。 benchmark_eval ├──apig_sdk
254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
2312-aarch64-snt9b-20240528150158-b521cc0 SWR上拉取 约束限制 本文档适配昇腾云ModelArts 6.3.905版本,请参考表2获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 训练资源需要使用单机8卡。 确保容器可以访问公网。 Step1
2312-aarch64-snt9b-20240606190017-b881580 从SWR拉取。 约束限制 本文档适配昇腾云ModelArts 6.3.906版本,请参考获取软件和镜像获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 推理需要单机单卡。 确保容器可以访问公网。 Step1
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError: Error(s)
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError: Error(s)