检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
建议与总结 您可以在训练代码里添加一行: os.system('pip list') 然后运行训练作业,查看日志中是否有所需要的模块。 父主题: 业务代码问题
通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。 再次运行作业,判断出问题的代码段。 父主题: 业务代码问题
environ["NCCL_SOCKET_IFNAME"] = "eth0" 只有当用户的NCCL版本低于2.14时,才需要进行以上设置。 父主题: 业务代码问题
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b 流程图 训练精度测试流程图如下图所示。 图1 训练精度测试流程图 执行训练任务
MA-Advisor性能调优建议工具使用指导 MA-Advisor是一款迁移性能问题自动诊断工具,其集成了昇腾自动诊断工具msprof-analyze,并在ModelArts Standard的Jupyter lab平台进行了插件化,能快速分析和诊断昇腾场景下PyTorch性能劣化问题并给出相关调优建议。
sult_{timestamp}.csv属于API级,标明每个API是否通过测试。建议用户先查看accuracy_checking_result_{timestamp}.csv文件,对于其中没有通过测试的或者特定感兴趣的API,根据其API name字段在 accuracy_ch
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代
通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。 再次运行作业,判断出问题的代码段。 父主题: 业务代码问题
msprobe工具使用指导 msprobe API预检 msprobe精度比对 msprobe梯度监控 父主题: GPU业务迁移至昇腾训练推理
代码自动迁移工具,通过简单import命令可将PyTorch训练脚本从GPU平台迁移至NPU平台运行。 包含在torch_npu包中。 自动迁移工具使用指导 训练业务代码适配昇腾PyTorch代码适配 PyTorch Analyse 迁移分析工具,可以使用工具扫描用户的训练脚本,识别出源码中不支持的torch
JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
如果超过最大递归深度,建议您在启动文件中增大递归调用深度,具体操作如下: import sys sys.setrecursionlimit(1000000) 父主题: 业务代码问题
当ECC错误且计数超过64时,系统会自动隔离故障节点,重启训练作业确认故障是否解决。如果未隔离的节点导致训练作业再次失败或卡死,请联系技术支持处理。 父主题: 业务代码问题
JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
install keras==2.6.0') os.system('pip install tensorflow==2.6.0') 父主题: 业务代码问题
JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
此问题有两种解决方法: 方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。 父主题: 业务代码问题