检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包年/包月和按需计费模式哪个更划算 包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。
的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金
一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,
Pangu-Predict-Table-TimSeries-2.0.0 该模型属于时间序列预测模型,用于基于时间序列数据预测未来值。 生成计划排期:根据历史生产数据和市场需求,预测未来的生产需求,优化生产计划。 2024年12月发布的版本,支持根据历史时间序列数据来预测未来的值,广泛应用于金融、销售预测、天气预报、能源消耗预测等领域。
训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单规则槽位泛化的真实业务场景数据。示例如下: 原始问题: 科技行业公司的平均利润和市值是多少? 识别原始问题中的槽位:
多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识
目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字样,如train01.csv;验证数据名称需包含eval字样;测试数据名称需包含test字样。文件的命名不能同时包含train、eval和test中的两个或三个。
是根据不同数据类型和业务需求进行有针对性的优化,使数据更符合训练标准,提高训练效率和精度。 确保业务需求对接 不同业务场景和模型应用对数据有不同的要求。数据加工能够根据特定业务需求进行定制化处理,确保数据满足应用场景的需求,从而提高数据和模型的匹配度,提升业务决策和模型预测的准确性。
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容
创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 编排与调用工作流
责任共担 华为云秉承“将公司对网络和业务安全性保障的责任置于公司的商业利益之上”。针对层出不穷的云安全挑战和无孔不入的云安全威胁与攻击,华为云在遵从法律法规业界标准的基础上,以安全生态圈为护城河,依托华为独有的软硬件优势,构建面向不同区域和行业的完善云服务安全保障体系。 安全性是华为云与您的共同责任,如图1所示。
行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。 在应用阶段,除了将模型嵌入到具体业务流程中外,还需要根据业务需求不断对模型进行优化,使其更加精准和高效。 父主题: 基础知识
范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以下是当前支持的模型清
任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景
需要保障在图片中人眼能清晰辨别目标。 图片分辨率大于640x640 px,关于拍摄角度、距离、分辨率等画面拍摄条件,需要保证训练集图片和测试部署时的图片保持一致。 构建CV大模型数据集流程 在ModelArts Studio大模型开发平台中,使用数据工程构建盘古CV大模型数据集流程见表2。
盘古工作空间介绍 工作空间功能旨在为用户提供灵活、高效的资产管理与协作方式。平台支持用户根据业务需求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目
ttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com.huaweicloud.sdk</groupId>
管理知识库 Agent开发平台支持对知识库执行获取知识库ID、删除、命中测试操作。 新增、删除知识库中知识文档 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台
上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studi