检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"*:failed,completed", "job_step:stop" ]”。订阅Workflow失败、完成和job_step节点停止三个事件,发生这三个事件时,会有消息提醒。 POST https://{endpoint}/v2/{project_id}/workflows/{wo
来查看指标。设置指标阈值告警、告警上报等,都可以直接在AOM控制台操作。具体参见通过AOM控制台查看ModelArts所有监控指标。 方式三:通过Grafana查看所有监控指标 当AOM的监控模板不能满足用户诉求时,用户可以使用Grafana可视化工具来查看与分析监控指标。Gra
generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├── ... ├──llm_inference #推理代码 ├── ascend_vllm_adapter
ECS中DockerFIle构建新镜像:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会尝试自动下载三方依赖源码并安装依赖的pip包,并将以上源码打包至镜像环境中; 训练作业的资源池以及ECS都需要连通公网,否则会安装和下载失败。资源池打通公
Dataset.list_datasets(session, dataset_type=0) print(dataset_list) 示例三:根据数据集名称查询数据集列表 # 查询名称中包含dataset的数据集列表 dataset_list = Dataset.list_datasets(session
软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-3rdLLM-6.3.905-20240611214128.zip 三方大模型训练和推理代码包 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
ModelArts-成长地图 | 华为云 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
WebUI,使其能够在昇腾的设备上运行。其中,Diffusers遵循了Huggingface的“single-file policy”的设计原则,它的三个主要模块Pipeline、Schedulers和预训练模型中,Pipeline和Schedulers都完全遵循了“single-file
Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表4 LabelAttribute 参数
启用团队标注功能的数据集,在创建完成后,可以在“标注类型”中看到“团队标注”的标识。 文本(文本分类、命名实体、文本三元组) 图4 文本分类、命名实体、文本三元组类型的参数 表3 文本类型标注作业的详细参数 参数名称 说明 数据集名称 选择支持当前标注类型的数据集。 添加标签集(文本分类、命名实体)
创建节点池 功能介绍 创建节点池。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/pools/{pool_name}/nodepools
当所有的标注对象都已完成标注,单击页面下方“保存当前页”完成“未标注”列表的文本标注。 “文本三元组”类型的数据集,不支持在标注页面修改标签,需要进入“标签管理”页面,修改“实体标签”和“关系标签”。 修改标签(文本三元组) 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 在
04-x86_64 引擎版本二: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64 引擎版本三:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64 引擎版本一:tensorflow_2
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
Error)与均方根误差(Root Mean Squared Error)。三个误差值能够表征真实值和预测值之间的差距。在多次建模的过程中,每一次建模结果都会产生一组误差值,评判一个模型好坏的方法就是看这三个误差值是否变小或者变大,误差值越小表示模型越好。 父主题: 使用自动学习实现预测分析
Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表8 LabelAttribute 参数
备注 图像分类 支持 支持 - 物体检测 支持 支持 - 图像分割 支持 支持 - 文本分类 支持 支持 - 命名实体 不支持 支持 - 文本三元组 不支持 支持 - 声音分类 支持 支持 - 语音内容 不支持 支持 - 语音分割 不支持 支持 - 表格数据集 支持 不支持 新导入的表格数据的schema和数据集一致。
资源池创建失败的原因与解决方法? 本文主要介绍在ModelArts资源池创建失败时,如何查找失败原因,并解决问题。 问题定位 您可以参考以下步骤,查看资源池创建失败的报错信息,并根据相应的解决方法解决问题: 登录ModelArts控制台,单击弹性集群,单击资源池列表上方的“操作记录”查看创建失败的资源池。
Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表8 LabelAttribute 参数
信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1