检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
object 训练作业状态信息。创建作业无需填写。 algorithm JobAlgorithmResponse object 训练作业算法。目前支持三种形式: id只取算法的id; subscription_id+item_version_id取算法的订阅id和版本id; code_dir
算法管理”。 在“我的算法”管理页面,单击“创建”,进入“创建算法”页面。填写算法的基本信息,包含“名称”和“描述”。 设置算法启动方式,有以下三种方式可以选择。 设置算法启动方式(预置框架) 图1 使用预置框架创建算法 需根据实际算法代码情况设置“代码目录”和“启动文件”。选择的预置
获取基础镜像 建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 启动容器镜像 启动容器镜像,启动前可以根据实际需要增加修改参数。 docker run -itd --net=host \ --device=/dev/davinci0
meta-llama/Llama-2-70b-chat-hf --revision <模型版本> --local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。
对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 步骤三 修改config.yaml中的${command} 请根据步骤二 修改训练超参配置修改超参值后,修改config.yaml中的${comm
工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm .xlst MOSS 数据集的 Excel 中需要有三个列名称:conversation_id, Human, assistant conversation_id: 指定的对话id, 如果相同,
数据集下载完成后,请务必先检查数据集是否已经导入成功,如果数据集还未成功导入,创建自动学习物体检测项目后数据标注节点会报错。 图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。
flip_p:做翻转操作的概率。默认值为1。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Grayscale 图片灰度化,将三通道的彩色图像转换到三通道的灰度图像。 do_validation:数据扩增前是否进行数据校验。默认值为True。 HistogramEqual 直方
对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 步骤三 修改config.yaml中的${command} 请根据步骤二 修改训练超参配置修改超参值后,修改config.yaml中的${comm
demo.sh xx.xx.xx.xx 4 0 # 第二台节点 sh demo.sh xx.xx.xx.xx 4 1 # 第三台节点 sh demo.sh xx.xx.xx.xx 4 2 # 第四台节点 sh demo.sh xx.xx.xx.xx 4
对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 步骤三 修改config.yaml中的${command} 请根据步骤二 修改训练超参配置修改超参值后,修改config.yaml中的${comm
工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm .xlst MOSS 数据集的 Excel 中需要有三个列名称:conversation_id, Human, assistant conversation_id: 指定的对话id, 如果相同,
object 训练作业状态信息。创建作业无需填写。 algorithm JobAlgorithmResponse object 训练作业算法。目前支持三种形式: id只取算法的id; subscription_id+item_version_id取算法的订阅id和版本id; code_dir
工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm .xlst MOSS 数据集的 Excel 中需要有三个列名称:conversation_id, Human, assistant conversation_id: 指定的对话id, 如果相同,
工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm .xlst MOSS 数据集的 Excel 中需要有三个列名称:conversation_id, Human, assistant conversation_id: 指定的对话id, 如果相同,
API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --datasets:数据集路径。 --datasets-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,
r用户,后续所有操作步骤都在ma-user用户下执行。 docker exec -it ${container_name} bash 步骤三:获取代码并上传 上传代码AscendCloud-AIGC-6.3.912-xxx.zip到容器的工作目录中,包获取路径请参见表2。 上传代
再进行计算,属于访存密集型。 分离部署场景下,全量推理和增量推理在不同的容器上进行,用于提高资源利用效率。 分离部署的实例类型启动分为以下三个阶段: 步骤六 启动全量推理实例:必须为NPU实例,用于启动全量推理服务,负责输入的全量推理。全量推理占用至少1个容器。 步骤七 启动增量
ci7。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 步骤三:下载依赖代码包并上传到宿主机 下载华为侧插件代码包AscendCloud-AIGC-6.3.911-xxx.zip文件,获取路径参见表1。
crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压