检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
├── ... ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
├── ... ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py
数据流更新:在实际应用中,数据可能会持续更新,增量训练允许模型适应新的数据而不必重新训练。 资源限制:如果重新训练一个大型模型成本过高,增量训练可以是一个更经济的选择。 避免灾难性遗忘:在传统训练中,新数据可能会覆盖旧数据的知识,导致模型忘记之前学到的内容。增量训练通过保留旧知识的同时学习新知识来避免这个问题。
6.3.908版本,请参考获取软件和镜像获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 训练作业使用单机单卡资源。 确保容器可以访问公网。 本案例仅支持在专属资源池上运行。 Step1 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用
6.3.905版本,请参考获取软件和镜像获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 训练作业至少需要单机8卡。 确保容器可以访问公网。 本案例仅支持在专属资源池上运行。 Step1 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用
my-task-image:latest # 替换为实际使用的镜像 业务负载和自定义指标采集可以共用一个容器,也可以由SideCar容器采集指标数据,然后将自定义指标采集容器指定到SideCar容器,这样可以不占用业务负载容器的资源。 自定义指标数据格式 自定义指标数据的格式必须是符合open
= "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION) # 数据集对象的占位符形式,可以通过指定data_type限制数据集的数据类型 表11 OBSPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str
ngine_id无需填写。 parameter 否 Array<Object> 训练作业的运行参数,为“label-value”格式。取值可以为自定义的任何值,其中label为参数名称,value为参数值,该样例请参考请求示例;当为自定义镜像训练作业的时候,此参数为容器环境变量。详细请参见表8。
启动后设置的自动停止时间,单位为秒。 store_time Integer 该规格实例处于非活跃状态,在数据库最长保存的时长。单位为小时。 默认为“-1”, 表示可以无限制保存。 billing_flavor String 计费规格。当该字段为空时,使用规格名称计费。 billing_params Integer
启动后设置的自动停止时间,单位为秒。 store_time Integer 该规格实例处于非活跃状态,在数据库最长保存的时长。单位为小时。 默认为“-1”, 表示可以无限制保存。 billing_flavor String 计费规格。当该字段为空时,使用规格名称计费。 billing_params Integer
dataset_type=None, data_sources=None, work_path=None, **kwargs) 根据数据类型创建数据集,用户可以在相同的数据集上创建不同类型的标注任务,如在图像数据集上创建图像分类、物体检测等标注任务。 create_dataset(session,dataset_name=None