检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
针对订阅模型,支持将模型一键部署为服务。 在“订阅模型”列表,单击“版本数量”,在右侧展开版本列表,当订阅模型的版本列表的状态显示为“就绪”时表示模型可以使用。 图1 进入“我的订阅” 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 如果您选择部署的是商用模型
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
k源码。若Notebook环境挂载了SFS Turbo,则源码文件会下载至SFS Turbo中。最后选择Notebook中“保存镜像”,则可以得到新的镜像环境。 若用户希望修改源码,则需要在Notebook环境中直接访问并编辑源码文件。 父主题: 准备镜像
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd是 huggingface专用下载工具,基于成熟工具git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
predictor configs结构 参数 是否必选 参数类型 描述 model_id 是 String 模型ID。“model_id”可以通过查询模型列表或者ModelArts管理控制台获取。 weight 是 Integer 权重百分比,分配到此模型的流量权重,仅当infe
样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定 单机<可选>: # 默认8卡 ascendfactory-cli train
样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定 单机<可选>: # 默认8卡 ascendfactory-cli train
使用任意文本编辑器创建prometheus-config.yml,内容如下。该YAML用于管理Prometheus的配置,部署Prometheus时通过文件系统挂载的方式,容器可以使用这些配置。 apiVersion: v1 kind: ConfigMap metadata: name: prometheus-config
#启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 确保Notebook内通网,已通网可以跳过这一步,未通网需要配置$config_proxy_str,$config_pip_str设置对应的代理和pip源,来确保当前代理和pip源可用。
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
r安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh 如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。
r安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh 如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。
会收费的实例已全部停止或删除,同时需清理运行Notebook实例时存储到云硬盘中的数据和其他存储到对象存储服务中的数据,以免继续扣费。 您可以在“费用中心 > 总览”页面设置“可用额度预警”功能,当可用额度、通用代金券和现金券的总额度低于预警阈值时,系统自动发送短信和邮件提醒。
clone的py文件变为ipynb文件? 在ModelArts的Notebook实例重启时,数据集会丢失吗? 在ModelArts的Notebook的Jupyterlab可以安装插件吗? 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练? 如何在ModelArts的Notebook的CodeLab上安装依赖?
服务运维和监控的实现步骤。 图3 司乘安全算法 将用户本地开发完成的模型,使用自定义镜像构建成ModelArts Standard推理平台可以用的模型。具体操作请参考从0-1制作自定义镜像并创建模型。 在ModelArts管理控制台,使用创建好的模型部署为在线服务。 登录云监控服
benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \
/home/ma-user && \ chmod 770 /root && \ usermod -a -G root ma-user 其他现象,可以在已有的训练故障案例查找。 建议与总结 用户使用自定义镜像训练作业时,建议按照训练作业自定义镜像规范制作镜像。文档中同时提供了端到端的示例供用户参考。