检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts训练作业无法解析参数,日志报错 问题现象 ModelArts训练作业无法解析参数,遇到如下报错,导致无法正常运行: error: unrecognized arguments: --data_url=xxx://xxx/xxx error: unrecognized
文生视频模型训练推理 CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch
解析Pascal VOC文件 解析xml文件支持本地和OBS,如果是OBS,需要Session信息。 PascalVoc.parse_xml(xml_file_path, session=None) 示例代码 指定xml路径,通过调用parse_xml来解析获取xml文件的信息。
解析Manifest文件 解析Manifest文件,支持本地和OBS。如果是OBS,需要Session信息。 manifest.parse_manifest(manifest_path, encoding='utf-8') 示例代码 通过Manifest路径来解析获取Manifest的信息。
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
mp4 ├── 2.mp4 ├── ... 每个 txt 与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*
docker exec -it ${container_name} bash Step6 安装Decord Decord是一个高性能的视频处理库,在昇腾环境中安装需要修改一些源码进行适配。 Decord建议安装在 /home/ma-user/lib中。 安装x264 mkdir
pu.py --ckpt-path $CKPT_PATH 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test1"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。
X为按顺序自动生成的数字),具体位置打印在日志中。 Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample
CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab 视频介绍 03:32 JupyterLab简介 VS Code Toolkit 视频介绍 03:32
外网访问限制 日志提示“ Network is unreachable” 运行训练作业时提示URL连接超时 父主题: 训练作业
Manifest管理 Manifest管理概述 解析Manifest文件 创建和保存Manifest文件 解析Pascal VOC文件 创建和保存Pascal VOC文件 父主题: 数据管理
下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错 训练输出路径被其他作业使用 PyTorch1.0引擎提示“RuntimeError: std:exception” MindSpore日志提示“
创建训练作业指导。 解析输入路径参数、输出路径参数 运行在ModelArts的模型读取存储在OBS服务的数据,或者输出至OBS服务指定路径,输入和输出数据需要配置3个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts推荐以下方式实现参数解析。 1 2 3