检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督
开发用于预置框架训练的代码 当您使用ModelArts Stanard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object
开启滚动:单击开启后,支持滚动升级的方式进行驱动升级。当前支持“按节点比例”和“按节点数量”两种滚动方式。 按节点比例:每批次驱动升级的节点数量为“节点比例*资源池节点总数”。 按节点数量:每批次驱动升级的节点数量为设置的节点数量。 对于不同的升级方式,滚动升级选择节点的策略会不同: 如果升级
本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook
2)。 仅支持FP16和BF16数据类型推理。 适配的CANN版本是cann_8.0.rc2,驱动版本是23.0.5。 本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持的模型列表、对应的开源权重获取地址如表1所示。 表1 支持的模型列表和权重获取地址 序号 支持模型 支持模型参数量
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
checkpoints是Notebook的关键字,如果用户创建文件夹命名为checkpoints,则在JupyterLab上无法打开、重命名和删除。此时可以在Terminal里使用命令行打开checkpoints,或者新建文件夹将checkpoints里的数据移动到新的文件夹下。 图1 Jupy
iffusers框架用于推理的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。 本方案新增了300IDUO的支持。 本方案目前仅适用于企业客户。 资源规格要求 推理部署推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook
ing算法的性能加速。算法计算总耗时减少了,所以用公式算出来的总线带宽也增加了。理论上Tree算法是比Ring算法更优的,但是Tree算法对网络的要求比Ring高,计算可能不太稳定。 Tree算法可以用更少的数据通信量完成all reduce计算,但用来测试性能不太合适。因此,会
针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。 父主题: 功能咨询
开启滚动:单击开启后,支持滚动升级的方式进行驱动升级。当前支持“按节点比例”和“按节点数量”两种滚动方式。 按节点比例:每批次驱动升级的节点数量为“节点比例*资源池节点总数”。 按节点数量:每批次驱动升级的节点数量为设置的节点数量。 对于不同的升级方式,滚动升级选择节点的策略会不同: 如果升级
(可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如