检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Studio大模型即服务平台完成模型创建后,可以对模型进行调优,获得更合适的模型。 场景描述 从“我的模型”中选择一个模型进行调优,当模型完成调优任务后会产生一个新的模型,呈现在“我的模型”列表中。 约束限制 表1列举了支持模型调优的模型,不在表格里的模型不支持使用MaaS调优模型。 当选择ChatGL
ok实例吗? JupyterLab目录的文件、Terminal的文件和OBS的文件之间的关系 ModelArts中创建的数据集,如何在Notebook中使用 pip介绍及常用命令 开发环境中不同Notebook规格资源“/cache”目录的大小 开发环境如何实现IAM用户隔离?
则每台机器上都必须有8张卡。 本文档提供的调测代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 本文档提供的调测代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 DataParallel进行单机多卡训练的优缺点 代码简单:仅需修改一行代码。
获取内容失败 原因分析 在创建训练作业时指定的代码目录不存在导致训练失败。 处理方法 请您根据报错原因排查创建训练作业时指定的代码目录,即OBS桶的路径是否正确。有两种方法判断是否存在。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件是否存在。 通过接口判断
Gallery。 发布的免费资产将展示在AI Gallery的公共页签以及“我的Gallery > 我的资产”的各个模块的“我的发布”中。 已经订阅的免费资产将展示在AI Gallery的“我的Gallery > 我的资产”的各个模块的“我的订阅”或“我的下载”中。 免费资产在ModelArts的AI
需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签具有相似性,则
retCode=0x91, [the model stream execute failed] 原因分析 出现该问题的可能原因如下: 数据读入的速度跟不上模型迭代的速度。 处理方法 减少预处理shuffle操作。 dataset = dataset.shuffle(buffer_size=x)
搜索Ascend 会得到一个新的关于NPU的checkpoint,如下图。 图5 NPU的checkpoint 根据上面checkpoint的箭头,对新的NPU的checkpoint进行规划,如下图所示。 图6 规划checkpoint 在ckpt_name中选择要使用的权重文件,devic
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
是否能满足最终的迁移效果需要进行系统的评估。如果您仅需要了解迁移过程,可以先按照本文档的指导进行操作并熟悉迁移流程。如果您有实际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。 通用的推理业务及LLM推理可提供下表进行业务迁移评估:
ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 op
NPU推理指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite
ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 op
ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 op
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 op
ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 op
NPU预训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite
yaml配置文件; -P表示鉴权文件中的某一组鉴权信息,默认是DEFAULT; -D表示是否开启debug模式(默认关闭),当开启debug模式后,命令的报错堆栈信息将会打印出来,否则只会打印报错信息; -h表示显示命令的帮助提示信息。 命令说明 表1 ma-cli支持的命令 命令 命令详情 configure
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。