检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安全 责任共担 资产识别与管理 身份认证与访问控制 数据保护技术 审计与日志 服务韧性 监控安全风险 故障恢复 更新管理 认证证书 安全边界
计费项 自动学习/Workflow计费项 数据管理计费项 开发环境计费项 模型训练计费项 模型管理计费项 推理部署计费项 专属资源池计费项
和nvidia-fabricmanager等软件后,驱动程序可能已经正确配置,从而解决了这个问题。 硬件问题:如果GPU之间的NVLINK连接存在硬件故障,那么这可能会导致带宽受限。重新安装软件后,重启系统,可能触发了某种硬件自检或修复机制,从而恢复了正常的带宽。 系统负载问题:
按照页面提示修改。 在续费管理页面开通自动续费 进入“费用中心 > 续费管理”页面。 自定义查询条件。 可在“自动续费项”页签查询已经开通自动续费的资源。 可对“手动续费项”、“到期转按需项”、“到期不续费项”页签的资源开通自动续费。 图1 续费管理 为包年/包月资源开通自动续费。
卖的AI资产。 免费资产无需支付费用,只需要支付在使用过程中消耗的硬件资源,硬件资源费用将根据实际使用情况由华为云ModelArts等管理控制台向使用方收取。 当前支持免费分享和订阅的资产类型有:Notebook代码样例、数据集、算法、模型、镜像。 商用资产由华为云云商店提供卖家发布和买家购买相关功能,AI
根据报错提示可以判断是运行命令的启动文件目录不正确导致运行失败。 处理方法 需要排查执行命令的启动文件目录是否正确,具体操作如下: 在ModelArts管理控制台,使用训练的自定义镜像创建训练作业时,“创建方式”选择“自定义算法”,“启动方式”选择“自定义”。 例如,当训练代码启动脚本在OBS路径
动重启,创建一直失败,请确认是否是自定义镜像的问题。 解决方案 排查是否是自定义镜像的问题。 自定义镜像构建完成,在ModelArts镜像管理注册时,“架构”和“类型”需要和源镜像保持一致。 图2 注册镜像 父主题: 实例故障
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本
Standard模型部署 ModelArts Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不
如何查看ModelArts训练作业资源占用情况? 在ModelArts管理控制台,选择“模型训练>训练作业”,进入训练作业列表页面。在训练作业列表中,单击目标作业名称,查看该作业的详情。您可以在“资源占用情况”页签查看到如下指标信息。 CPU:CPU使用率(cpuUsage)百分比(Percent)。
ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 ModelArts服务的计费方式简单、灵活,您既可以选择按实际使用时长计费,也可以选择更经济的按包周期(包年/包月)计
型推理。 ModelArts Standard权限配置 样例 对应功能 场景 说明 ModelArts Standard权限管理 IAM权限配置、权限管理 为子账号配置权限 当一个华为云账号下需创建多个IAM子账号时,可参考此样例,为IAM子账号赋予使用ModelArts所需的权
A050801 节点管理 节点运维 资源预留。 节点被标记为备机,并具有备机污点。 A050802 节点管理 节点运维 未知错误。 节点被标记为具有未知故障污点。 A200001 节点管理 驱动升级 GPU升级。 节点正在执行GPU驱动升级。 A200002 节点管理 驱动升级 NPU升级。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: # run on terminal docker cp ${your_container_id}:/xxx/xxx/pytorch.tar
模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root
当云服务资源不再使用时,可以将他们退订或删除,从而避免继续收费。详细介绍请参见停止计费。 成本管理 您可以从成本构成、成本分配、成本分析和成本优化四个维度来管理成本。更多详情,请参见成本管理。