检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过VS Code远程使用Notebook实例 VS Code连接Notebook方式介绍 安装VS Code软件 VS Code一键连接Notebook VS Code ToolKit连接Notebook VS Code手动连接Notebook 在VS Code中上传下载文件 父主题:
#在xxx.zip压缩包所在路径直接解压 解压命令的更多使用说明可以在主流搜索引擎中查找Linux解压命令操作。 多个文件同时上传时,JupyterLab窗口最下面会显示上传文件总数和已上传文件数。 上传文件入口 方式一:使用JupyterLab打开一个运行中的Notebook环境。
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具
移到NPU或者GPU设备上仍然一样。 固定随机性完成后,可以使用缩小的模型在单机环境进行问题复现。复现后使用msprobe工具进行问题定位。需要注意的是,部分模型算法本身存在固有的随机性,在使用上述方法固定随机性后,如果使用工具也未能找到出问题的API,需要分析是否由算法本身的随机性导致。
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
Test节点,其余参数可保持默认值或根据实际需求修改。 测试使用的最大数据:取值范围[1, 1024],单位可选为“B”、“KB”、“MB”、“GB”“TB”。测试使用的最大数据须大于开始测试使用的最小数据。 开始测试使用的最小数据:取值范围[1, 1024],单位可选为“B”、“KB”、“MB”、“GB”“TB”。
在ModelArts的Notebook的Jupyterlab可以安装插件吗? Jupyter可以安装插件。 目前jupyter插件多数采用wheel包的形式发布,一次性完成前后端插件的安装,安装时注意使用jupyter服务依赖的环境“/modelarts/authoring/no
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公
SDK将OBS中的文件下载到本地。 方式一:使用OBS进行下载 在OBS中,可以将样例中的“obs_file.txt”下载到本地。如果您的数据较多,推荐OBS Browser+下载数据或文件夹。使用OBS下载文件的操作指导,请参见下载文件。 方式二:使用ModelArts SDK进行下载
训练日志 步骤3:使用ModelArts Notebook进行开发调试 使用ModelArts Notebook进行开发调试具有如下优势: 环境保持一致 配置一键完成 代码远程Debug 资源按需使用 只有PyCharm专业版支持本章节,社区版可以直接跳转至步骤4:使用PyCharm
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
https://code.visualstudio.com/updates/v1_85 图1 VS Code的下载位置 VS Code版本要求: 建议用户使用VS Code 1.85.2版本进行远程连接。 VS Code安装指导如下: 图2 Windows系统下VS Code安装指导 Linux系统下,执行命令sudo
授予子账号使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子账号使用SMN消息服务的权限。SMN消息通知服务配合CES监控告警功能一起使用。 SMN
s数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “
0)的地址,设置为任务worker-0的通信域名。 master_port:在主任务(rank 0)上,用于分布式训练期间通信的端口。默认设置为18888端口。当遇到master_port冲突问题时,可通过设置MA_TORCHRUN_MASTER_PORT环境变量值修改端口配置。 rdzv_id:Rendez
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用pip install时出现“没有空间”的错误 问题现象 在Notebook实例中,使用pip install时,出现“No Space left...”的错误。 解决办法 建议使用pip install --no-cache ** 命令安装,而不是使用pip install
使用Notebook进行AI开发调试 Notebook使用场景 创建Notebook实例 通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面