检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标注不支持多标签,即一张图片不可以添加多个标签。 标签名是由中文、大小写字母、数字、中划线或下划线组成。
使用ModelArts时提示“权限不足”,如何解决? 当您使用ModelArts时如果提示权限不足,请您按照如下指导对相关服务和用户进行授权,并对用户权限进行检查操作。 本案例中以OBS权限不足为例,介绍如何为用户授予OBS服务权限。其它权限不足的场景也可以参考本案例操作,只是授
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
Step2 为用户配置云服务使用权限 主用户为子账号授予ModelArts、OBS等云服务的使用权限后,子账号才可以使用这些云服务。此步骤介绍如何为用户组中的所有子账号授予使用ModelArts、OBS、SWR等各类云服务的权限。 主用户在IAM服务的用户组列表页面,单击“授权”,进入到授权页面,为子账号配置权限。
在Notebook中使用Moxing命令 MoXing Framework功能介绍 Notebook中快速使用MoXing mox.file与本地接口的对应关系和切换 MoXing常用操作的样例代码 MoXing进阶用法的样例代码 父主题: 使用Notebook进行AI开发调试
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MRS
kv-cache-int8量化支持的模型请参见表1。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/
重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/
表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
训练日志 步骤3:使用ModelArts Notebook进行开发调试 使用ModelArts Notebook进行开发调试具有如下优势: 环境保持一致 配置一键完成 代码远程Debug 资源按需使用 只有PyCharm专业版支持本章节,社区版可以直接跳转至步骤4:使用PyCharm
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
使用ma-cli obs-copy命令复制OBS数据 使用ma-cli obs-copy [SRC] [DST]可以实现本地和OBS文件或文件夹的相互复制。 $ma-cli obs-copy -h Usage: ma-cli obs-copy [OPTIONS ] SRC
通过OBS上传的音频数据添加到ModelArts。 删除音频:您可以依次单击选中音频,或勾选“选择当前页”选中该页面所有音频进行删除操作。 所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入“已标注”页签,对已标注的数据进行修改。 基于音频修改 在数
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务