检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型使用CV2包部署在线服务报错 问题现象 使用CV2包部署在线服务报错。 原因分析 使用OBS导入元模型,会用到服务侧的标准镜像,标准镜像里面没有CV2依赖的so的内容。所以ModelArts不支持从对象存储服务(OBS)导入CV2模型包。 处理方法 需要您把CV2包制作为自定
read_csv(ff, **param) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置
数,可以使用--python-files py1 --python-files py2。 --groups Array of String 否 资源分组名称,如果需要指定多个参数,可以使用--groups group1 --groups group2。 --args Array of
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
户提供一个可调用的API,此API为标准Restful API。用户可以通过AK/SK签名认证方式调用API。 使用AK/SK认证时,您可以通过APIG SDK访问,也可以通过ModelArts SDK访问。使用ModelArts SDK访问参见用户AK-SK认证模式。本文档详细介绍如何通过APIG
权(默认)和AK/SK鉴权; 在使用账号认证时,需要指定username和password;在使用IAM用户认证时,需要指定account、username和password; 在ModelArts Notebook中可以不用执行鉴权命令,默认使用委托信息,不需要手动进行鉴权操作;
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
ModelArts支持云审计的关键操作 公有云平台提供了云审计服务。通过云审计服务,您可以记录与ModelArts相关的操作事件,便于日后的查询、审计和回溯。 前提条件 已开通云审计服务。 数据管理支持审计的关键操作列表 表1 数据管理支持审计的关键操作列表 操作名称 资源类型 事件名称
动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface
委托授权ModelArts云服务使用SFS Turbo 本章节介绍如何配置ModelArts委托权限,允许用户使用专属资源池的网络中的“关联sfsturbo”和“解除关联”功能。 当用户新增委托并授权操作SFS Turbo时,请参考新增委托授权操作SFS Turbo。 当用户为已有的委托新增权限,授权操作SFS
部署。 约束与限制 需要申请单个模型大小配额和添加使用节点本地存储缓存的白名单。 需要使用自定义引擎Custom,配置动态加载。 需要使用专属资源池部署服务。 专属资源池磁盘空间需大于1T。 操作事项 申请扩大模型的大小配额和使用节点本地存储缓存白名单 上传模型数据并校验上传对象的一致性
动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface
s资源上执行管理命令。用户可以使用交互式命令行提示符或脚本通过终端执行命令。为了方便理解,下面将ModelArts CLI统称为ma-cli。ma-cli支持用户在ModelArts Notebook及线下虚拟机中与云端服务交互,使用ma-cli命令可以实现命令自动补全、鉴权、镜
cluster_id 专属资源池ID,默认为空,不使用专属资源池。使用专属资源池部署服务时需确保集群状态正常;配置此参数后,则使用集群的网络配置,vpc_id参数不生效;与下方real-time config中的cluster_id同时配置时,优先使用real-time config中的cluster_id参数。
-r OBS支持多种文件上传方式,当文件少于100个时,可以在OBS Console中上传,当文件大于100个时,推荐使用工具,推荐OBS Browser+(win)、obsutil(linux)。上述例子为obsutil使用方法。 准备算法 main.py文件内容如下,并将其上传至OBS桶的demo文件夹中:
镜像保存时,哪些目录的数据可以被保存 可以保存的目录:包括容器构建时静态添加到镜像中的文件和目录,可以保存在镜像环境里。 例如:安装的依赖包、“/home/ma-user”目录 不会被保存的目录:容器启动时动态连接到宿主机的挂载目录或数据卷,这些内容不会被保存在镜像中。可以通过df -h命
训练作业的描述。 您可以单击编辑图标,更新训练作业的描述。 “作业优先级” 显示训练作业的优先级。 训练作业参数 表2 训练作业参数 参数 说明 “算法名称” 本次训练作业使用的算法。单击算法名称,可以跳转至算法详情页面。 “预置镜像” 本次训练作业使用的预置镜像框架。仅使用预置框架创建的训练作业才有该参数。