检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
定好的起始单词或者句子,可以让它自行地随机生成后续的文本。 环境准备 在华为云ModelArts Server预购相关超强算力的GPU裸金属服务器,并选择AIGC场景通用的镜像,完成使用Megatron-DeepSpeed训练GPT2模型。本最佳实践使用以下镜像和规格: 镜像选择:Ubuntu
ModelArts允许用户在Notebook实例中更改SSH配置信息,Notebook实例状态需在“停止”时才可以修改。 在创建Notebook实例时,未配置SSH远程连接,创建完成后,需要开启远程连接时,则可以在Notebook的实例详情页打开SSH的配置信息开关;如果用户设置了允许远程连接Note
下一个检测周期。如果在多个检测周期内,作业所有进程IO都没有变化,则进入资源利用率检测阶段。 资源利用率:在作业进程IO没有变化的情况下,采集一定时间段内的GPU利用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。
ModelArts支持云审计的关键操作 公有云平台提供了云审计服务。通过云审计服务,您可以记录与ModelArts相关的操作事件,便于日后的查询、审计和回溯。 前提条件 已开通云审计服务。 数据管理支持审计的关键操作列表 表1 数据管理支持审计的关键操作列表 操作名称 资源类型 事件名称
权(默认)和AK/SK鉴权; 在使用账号认证时,需要指定username和password;在使用IAM用户认证时,需要指定account、username和password; 在ModelArts Notebook中可以不用执行鉴权命令,默认使用委托信息,不需要手动进行鉴权操作;
使用自定义镜像创建训练作业找不到启动文件 问题现象 使用自定义镜像创建训练作业,出现如下报错,提示找不到运行的主文件:no such file or directory。 原因分析 根据报错提示可以判断是运行命令的启动文件目录不正确导致运行失败。 处理方法 需要排查执行命令的启动文件目录是否正确,具体操作如下:
存储盘是挂载至容器/home/ma-user/work/目录下, 可以在实例运行中的状态下,动态扩充存储盘容量,单次最大动态扩容100GB。 动态扩容EVS适用于哪些使用场景 在Notebook开发过程中,初期存储使用量较小时, 创建Notebook可以选择小容量EVS, 比如5G大小; 开发完成后
read_csv(ff, **param) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置
在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 Notebook实例将停止计费,但如有EVS盘挂载,存储部分仍会继续计费。 删除实例 针对不再使用的Notebook实例,可以删除以释放资源。 登录ModelAr
训练作业的描述。 您可以单击编辑图标,更新训练作业的描述。 “作业优先级” 显示训练作业的优先级。 训练作业参数 表2 训练作业参数 参数 说明 “算法名称” 本次训练作业使用的算法。单击算法名称,可以跳转至算法详情页面。 “预置镜像” 本次训练作业使用的预置镜像框架。仅使用预置框架创建的训练作业才有该参数。
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
委托授权ModelArts云服务使用SFS Turbo 本章节介绍如何配置ModelArts委托权限,允许用户使用专属资源池的网络中的“关联sfsturbo”和“解除关联”功能。 当用户新增委托并授权操作SFS Turbo时,请参考新增委托授权操作SFS Turbo。 当用户为已有的委托新增权限,授权操作SFS
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
部署。 约束与限制 需要申请单个模型大小配额和添加使用节点本地存储缓存的白名单。 需要使用自定义引擎Custom,配置动态加载。 需要使用专属资源池部署服务。 专属资源池磁盘空间需大于1T。 操作事项 申请扩大模型的大小配额和使用节点本地存储缓存白名单 上传模型数据并校验上传对象的一致性
当您需要修改训练作业的算法时,可以在训练作业详情页面右上角,单击“另存为算法”。 在“创建算法”页面中,会自动填充上一次训练作业的算法参数配置,您可以根据业务需求在原来算法配置基础上进行修改。 订阅算法不支持另存为算法。 重建训练作业 当对创建的训练作业不满意时,您可以单击操作列的重建,重
练所有的依赖环境,因此可以将已经调测完成的开发环境保存成一个镜像。 方式一:保存镜像需要指定镜像名称、镜像标签、SWR服务的组织等信息,保存镜像需要等待几分钟时间,期间不能对Notebook有额外操作。 SWR服务的组织可以在SWR服务中进行创建,也可以使用SDK创建默认的SWR组织,默认最多只能创建5个组织。
-r OBS支持多种文件上传方式,当文件少于100个时,可以在OBS Console中上传,当文件大于100个时,推荐使用工具,推荐OBS Browser+(win)、obsutil(linux)。上述例子为obsutil使用方法。 准备算法 main.py文件内容如下,并将其上传至OBS桶的demo文件夹中:
labeling_input:选择预先创建的数据集即可,版本可以不用选择。 task_name:填写需要创建的标注任务名称即可。 说明: 首次运行需要配置,会自动创建新的标注任务,后续不建议进行修改,使用同一个标注任务进行数据标注。 图像分类训练参数配置 算法超参相关的配置,建议直接使用默认值。每个参数的具体含义已在控制台界面输入框下方说明。
针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts。 约束与限制 关于自定义镜像规范和说明,请参见模型镜像规范。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件 确保您使用的OBS目录与ModelArts在同一区域。
Notebook里使用)。 df 查询镜像构建缓存(只支持ModelArts Notebook里使用)。 prune 清理镜像构建缓存 (只支持ModelArts Notebook里使用)。 debug 在ECS上调试SWR镜像是否能在ModelArts Notebook中使用 (只支持已安装docker环境的ECS)。