检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
75 1.5 N2 0.88 1.24 N4 0.75 1.5 针对Token转换比,平台提供了Token计算器功能,可以根据您输入的文本计算Token数量,您可以通过以下方式使用该功能: 在左侧导航栏选择“能力调测”,单击右下角“Token计算器”使用该功能。 使用API调用To
一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “
在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的
图4 多场景测试-复杂对话场景 优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明确的输入指令将提升工作流的运行效果。例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢吃苹果”。通过这种明确的指令,更容易生成准确的翻译结果。
着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的
如果在创建视频类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。 审核视频类数据集标注结果的步骤如下:
如果在创建文本类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。 审核文本类数据集标注结果的步骤如下:
查看数据集基本信息。在“基本信息”页签,可以查看数据详情、数据来源以及扩展信息。 下载原始数据集。在“数据预览”页签,可以查看数据内容,单击右上角“下载”即可下载原始数据集。 查看数据血缘。在“数据血缘”页签,可以查看当前数据集所经历的完整操作,如加工、标注等。 查看操作记录。在“操作记录”页签,可以查看当前数
如果在创建图片类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。 审核视频类数据集标注结果的步骤如下:
示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“根据以下信息,写一封商务电子邮件。{邮件内容描述}”,摘要任务可以使用“请根据以下内容生成摘要。\n{文本内容}”。\n为换行符。 补说明
缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平台支持多种部署模式,能够满足不同场景的需求。通过灵活的API接口,模型可以无缝集成到各类应用中。 模型调用:在模型部署后,用户可以通过模型调用功能快速访问模型的服务。平台提供了高效的
训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。在初步验证大模型效果时,可以假设检索出的文档完全相关,将其与query及特定pro
生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样; 输出格式:口播如下: xxx 方法二:产品介绍可以来源于真实的产品信息,也可以通过in-context-learning方式生成。示例如下: 大模型输入: 你是一个广告策划,你的工作是为不同的产品写宣传文案。
全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。
在基于事实的问答场景,可以使用较低的回复随机性数值,以获得更真实和简洁的答案;在创造性的任务例如小说创作,可以适当调高回复随机性数值。建议不要与核采样同时调整。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值。核采样值可以限制模型选择这些高概率
将“核采样”参数调小至0.1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以观察到模型前后两次回复内容的多样性降低。 图4 “核采样”参数为0.1的生成结果1 图5 “核采样”参数为0.1的生成结果2 预置模型部署成功后,可以通过“文本对话”API调用NLP大模型,调用步骤如下: 登录ModelArts
大模型使用类问题 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的具体文件进行上传 如何查看预置模型的历史版本
因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder”模块,可依据模板填写Prompt,单击“示例”,输入框中将自动填入角色指令模板。 示例如图2,您可以依据模板进行填写。 图2
平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代码的情况下,快速构建、调优并运行属于自己的大模型应用。通过简单的配置,用户可以轻松创建Agent应用,快速体验智能化应用的便捷性。 平台提供导入知识功能,支持用户存储和管理数据,并与AI应用进行互动。支持多种格式的本
原始数据往往包含噪声、缺失值或不一致性,这会直接影响模型训练效果。通过数据清洗操作,可以有效去除无效信息、填补缺失数据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数