检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
如果使用华为MDC产品,请填写MDC版本号,如果没有可以不填。 例如:使用了C83版本。 - 性能指标与预期 例1: 模型:YOLOv5 运行环境:Vnt1 单卡 性能指标:QPS 100/s (两进程) 性能约束:单次请求最大可以接受时延需小于100ms 性能预期:QPS 130/s
factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括: {pt, sft}. 新增 FINETUNING_TYPE,表示微调的策略,可以选择的参数包括:{full, lora} 删除 RUN_TYPE 所以当前的组合情况为: 项目
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
创建Notebook实例后无法打开页面,如何处理? 使用pip install时出现“没有空间”的错误 出现“save error”错误,可以运行代码,但是无法保存 出现ModelArts.6333错误,如何处理? 打开Notebook实例提示token不存在或者token丢失如何处理?
思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
job_name=job_name) 多次调试。 上一步执行过程中,训练脚本的日志会实时打印到控制台,如果用户的代码或者参数有误的话,可以很方便的看到。在Notebook中经过多次调试,得到想要的结果后,可以进行下一步。 查询训练支持的计算节点类型和最大个数。 from modelarts.estimatorV2
my-task-image:latest # 替换为实际使用的镜像 业务负载和自定义指标采集可以共用一个容器,也可以由SideCar容器采集指标数据,然后将自定义指标采集容器指定到SideCar容器,这样可以不占用业务负载容器的资源。 自定义指标数据格式 自定义指标数据的格式必须是符合open
code为OBS存放代码路径的最后一级目录,可以根据实际修改。 使用自定义镜像创建训练作业时,在代码目录下载完成后,镜像的启动命令会被自动执行。启动命令的填写规范如下: 如果训练启动脚本用的是py文件,例如train.py,运行命令可以写为python ${MA_JOB_DIR}/demo-code/train
网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最大程度减小设备等待(计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用
设置镜像的对外服务接口,推理接口需与config.json文件中apis定义的url一致,当镜像启动时可以直接访问。下面是mnist镜像的访问示例,该镜像内含mnist数据集训练的模型,可以识别手写数字。其中listen_ip为容器IP,您可以通过启动自定义镜像,在容器中获取容器IP。 请求示例 curl -X POST
量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 自动学习训练后的模型是否可以下载?
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
W4A16、 per-group(group-size=128)和perchannel量化。 支持AWQ量化的模型列表请参见表1。 步骤一:模型量化 可以在Huggingface开源社区获取量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
如图2。开发者可以通过Workflow进行有向无环图(Directed Acyclic Graph,DAG)的开发,整个DAG的执行就是有序的任务执行模板,依次执行从数据标注、数据集版本发布、模型训练、模型注册到服务部署环节。如果想了解更多关于Workflow您可以参考Workflow简介。
模型没有真正的调用昇腾后端,而是自动切换到了CPU上执行,这种情况可以通过输出日志来进行判断。 自助性能调优三板斧 基于上一步完成的性能测试,为了最大化模型推理性能,首先确保当前使用的CANN版本是最新版本(最新版本请见此处),每个迭代的CANN版本都有一定的性能收益。在此基础上,可以进行三板斧自助工具式性能调优。