检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何调用API 构造请求 认证鉴权 返回结果
Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训练、模型管理到模型部署上线的端到端开发流程(即AI全流程开发)。 本文档介绍了如何在ModelArts管
自动学习 计费方式 按需购买 包年包月 计费FAQ 如何查看ModelArts消费详情? 训练作业如何收费? 如何查看ModelArts中正在收费的作业? 04 进阶教程 通过提供针对多种场景、多种AI引擎的ModelArts样例,方便您快速了解使用ModelArts完成AI开发的流程和操作。
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
报错“The VS Code Server failed to start”如何解决? 问题现象 解决方法 检查VS Code版本是否为1.78.2或更高版本,如果是,请查看Remote-SSH版本,如果低于v0.76.1,请升级Remote-SSH。 打开命令面板(Windows:
0 ipython 8.18.1 jupyter-client 7.4.9 matplotlib 3.5.1 numpy 1.22.0 pandas 1.3.5 Pillow 10.0.1 pip 21.0.1 psutil 5.9.5 PyYAML 6.0.1 scipy 1.10
下载或读取文件报错,提示超时、无剩余空间 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50GB,只有默认的10GB,导致作业训练失败。
硬盘限制故障 下载或读取文件报错,提示超时、无剩余空间 复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device”
大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prompt模板,让大模型准确理解业务意图,分解复杂任务,沉淀出丰富的多个智能Agent,帮助企业快速智能构建和部署大模型应用。
如何上传数据至OBS? 使用ModelArts进行AI模型开发时,您需要将数据上传至对象存储服务(OBS)桶中。您可以登录OBS管理控制台创建OBS桶,并在您创建的OBS桶中创建文件夹,然后再进行数据的上传,OBS上传数据的详细操作请参见《对象存储服务快速入门》。 您在创建OBS
ModelArts开发环境提供的预置镜像主要包含: 常用预置包:基于标准的Conda环境,预置了常用的AI引擎,常用的数据分析软件包,例如Pandas,Numpy等,常用的工具软件,例如cuda,cudnn等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应
在ModelArts上训练模型如何配置输入输出数据? ModelArts支持用户上传自定义算法创建训练作业。上传自定义算法前,请完成创建算法并上传至OBS桶。创建算法请参考开发用于预置框架训练的代码。创建训练作业请参考创建训练作业指导。 解析输入路径参数、输出路径参数 运行在Mo
安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts Standard的训练作业会读取存储在OBS服务的数据,或者
Open-Sora1.2基于Lite Server适配PyTorch NPU训练推理指导(6.3.910) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora 1.2 训练和推理。
M用户的管理员账号进行委托授权。 快速添加授权 登录ModelArts管理控制台,按照版本选择以下操作。 新版本:在左侧导航栏选择“系统管理 > 权限管理”。 旧版本:在左侧导航栏选择“全局配置”。 单击“添加授权”,配置相关参数。 图1 快速添加授权 表1 参数说明 参数 说明
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
关于如何给一个用户赋权(准确讲是需要先将用户加入用户组,再面向用户组赋权),可以参考IAM的文档《权限管理》。 而ModelArts还有一个特殊的地方在于,为了完成AI计算的各种操作,AI平台在任务执行过程中需要访问用户的其他服务,典型的就是训练过程中,需要访问OBS读取用户的
mance problem analysis中对应维度的各项分析及其优先级。 红色为高优先级,黄色为中等优先级,绿色为低优先级。参考html进行分析调优时,请按照优先级从高到低依次进行并测试调优后性能,快速解决重点问题。 图1 html报告总览-三大模块 当前advisor的performance
Cluster资源池详情页中查看更多信息。 图2 查看Lite Cluster资源池基本信息 管理Lite Cluster资源池标签 通过给资源池添加标签,可以标识云资源,便于快速搜索资源池。 在ModelArts管理控制台的左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”。 在Lite资源池列表中,单击资源池名称进入资源池详情页面。