检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在提示词撰写区域输入提示词文本,可以插入若干个变量,变量需要使用占位符{{ }}标识。 图2 撰写提示词 撰写完成后,单击“确定”,平台会自动识别插入的变量。提示词中识别的变量将展示在变量定义区域。 变量名称可以进行修改,如添加备注信息以便更好理解变量的作用。 图3 变量定义 变量定义区域展示的
智能安防的应用与优势 在智能安防方面,AI助手同样发挥着重要作用。借助先进的图像识别技术,AI助手可以实时监控家中情况,识别异常行为并及时通知用户。例如,当检测到有人闯入时,系统会立即发送警报信息给用户手机,并记录下入侵者的影像资料。此外,AI助手还能与智能门锁、门窗传感器等设备联动,提供全方位的家庭安全保障。
应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。
s”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency> <groupId>com
在大规模数据集中,噪声和错误数据是不可避免的。这包括回复事实性错误、拼写错误、语法错误、不完整的数据片段等。通过自动化的脚本或手动审核,识别并移除这些低质量的数据,以确保模型学习的质量。 过滤不适当内容 :大模型的训练数据可能包含不适当或有害的内容。使用自然语言处理工具和规则集来
指令选择完成后,单击“确定”,并配置指令参数。 如图1,展示了预训练文本类数据集的合成指令参数配置示例,该合成任务实现利用预训练文本生成问答对。 图1 预训练文本类数据集合成指令参数配置示例 指令编排完成后,单击右上角“启用调测”,可以对当前编排的指令效果进行预览。 指令调测完成后,单击“创建并启动”,平台将启动合成任务。
获取user name、domain name、project id 打开Postman,新建一个POST请求,并输入“西南-贵阳一”区域的“获取Token”接口。并填写请求Header参数。 接口地址为:https://iam.cn-southwest-2.myhuaweicloud
NLP大模型为程序员提供了强大的代码助手,显著提升了研发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化。借助盘古大模型,程
过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理解,因此,提示词中包含的关键词、句式和语境如果与训练数据中的模式接近,模型能够“回忆”并运用已学习的知识和指令。 不同模型间效果差异。 由于
CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 初始扰动数量 用于选择集合预报的CNOP初始扰动数量。 在CN
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale 否 Double
请求消息体 请求消息体通常以结构化格式发出,与请求消息头中Content-Type对应,传递除请求消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类
要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?”
的开发,满足复杂业务需求。 支持区域: 西南-贵阳一 开发盘古大模型提示词工程 开发盘古大模型Agent应用 使用盘古NLP大模型创建Python编码助手应用 低代码构建多语言文本翻译工作流 能力调测 盘古大模型提供了便捷的“能力调测”功能,用户可以体验平台预置的多种模型功能,如文本对话、科学计算功能。
0、400、300、250、200、150、100、50hPa高空层次)0点、6点、12点、18点时刻的数据文件,下载步骤示例如下: 注册并登录数据下载平台,在高空变量数据下载链接中: Product type选择Reanalysis。 Variable新选择Geopotential、Specific
获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入工作流的调用路径,详见获取调用路径。 填写请求Header参数。 参数名为Content-Type,参数值为application/json。
模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,模型来源选择“盘古大模型”。输入模型对应的obs地址和模型命名、选择资源类型、输入资产描述并设置资产可见性后,单击“确定”,启动导入模型任务。 图3 导入模型 父主题: 管理盘古大模型空间资产
在平台中,空间资产指的是存储在工作空间中的所有资源,包括数据资产和模型资产。这些资产是用户在平台上进行开发和管理的基础,集中存储和统一管理的方式有助于提升操作效率,并确保资源的规范性与安全性。 数据资产:数据资产是指用户在平台上发布的所有数据集。这些数据集会被存储在数据资产中,用户可以随时查看数据集的详细
平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
终端设备。创建边缘资源池之前需先创建ModelArts边缘节点。节点创建完成后,同步下载证书和边缘Agent固件,及时将固件复制到节点上,并执行注册命令完成设备的注册。 创建边缘资源池的流程见表1。 表1 创建边缘资源池 操作步骤 说明 准备工作 说明创建边缘资源池的前期准备。 步骤1:注册边缘资源池节点