检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
处理方法 尽量代码里不要去修改CUDA_VISIBLE_DEVICES变量,用系统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格下,指定的卡ID与实际分配的卡ID不匹配的情况。 如果上述方法还出现了错误,可以去notebook里面调试打印CUDA_VISIBLE_DEV
企业场景:管理者可创建用于生产任务的工作空间并限制仅让运维人员使用,用于日常调试的工作空间并限制仅让开发人员使用。通过这种方式让不同的企业角色只能在指定工作空间下使用资源。 目前工作空间功能是“受邀开通”状态,作为企业用户您可以通过您对口的技术支持申请开通。 父主题: 权限控制方式
态的Notebook可以执行停止操作。 Notebook停止后: “/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以
json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。
--max-depth 0 执行如下命令,排查回收站占用内存(回收站文件默认在/home/ma-user/work/.Trash-1000/files下)。 cd /home/ma-user/work/.Trash-1000/ du -ah 根据实际删除回收站不需要的大文件。(注:请谨慎操作,文件删除后不可恢复)
为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。 # 多机执行命令为:sh scripts/llama2/0_pl_pretrain_70b
Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 多机执行命令为:sh scripts/llama2/0_pl_lora_70b.sh <MASTER_ADDR=xx.xx.xx
Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 多机执行命令为:sh scripts/llama2/0_pl_sft_70b.sh <MASTER_ADDR=xx.xx.xx
提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树
务,和具体的AI引擎解耦,在ModelArts支持的所有AI引擎(TensorFlow、MXNet、PyTorch、MindSpore等)下均可以使用。 MoXing Framework模块提供了OBS中常见的数据文件操作,如读写、列举、创建文件夹、查询、移动、复制、删除等。 在ModelArts
删除资源池 释放游离节点 如果您的资源中存在游离节点(即没有被纳管到资源池中的节点),您可在“AI专属资源池 > 弹性集群Cluster >节点”下查看此类节点的相关信息。 针对游离节点,可以通过以下方式释放节点资源: 如果是“包年/包月”且资源未到期的节点,您可单击操作列的“退订”,即
模型。下面介绍方式一如何操作,如果采用方式二,可以跳过此步骤。 通过git下载diffusers对应版本的源码。 git clone https://github.com/huggingface/diffusers.git -b v0.11.1 在diffusers的script
为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。xxx-Ascend请根据实际目录替换。 # 多机执行命令为:sh scripts/llama2/0_pl_pretrain_70b
数据预处理中的环境变量 环境变量 示例 参数说明 RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-use
个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_n
yes 如果正确请按继续排查。 如果不正确请按上面格式修改后继续排查。 查看密钥文件的路径,建议放在C:\Users\{user}\.ssh下,并确保密钥文件无中文字符。 排查插件包是否为最新版:在extensions中搜索,看是否需要升级。检查Remote-ssh三方插件是否兼容。
json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。
json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。
json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。
TfServingBaseService class MnistService(TfServingBaseService): # 预处理中处理用户HTTPS接口输入匹配模型输入 # 对应上述训练部分的模型输入为{"images":<array>} def _preprocess(self