检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
量符合大模型训练的需求,从而提高后续模型训练的效果。 数据发布意义 数据发布不仅仅是将数据转换为不同格式,还包括根据任务需求评估数据集效果并调整数据比例,确保数据在规模、质量和内容上满足训练标准。具体而言,数据发布具备以下几个重要意义: 确保数据质量和适配性 数据发布功能通过数据
常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题),由于这些领域的相关数据广泛存在,模型通常能够较好地理解并生成准确回答。在这种情况下,通过调整提示词来引导模型的生成风格和细节,通常可以达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否
集。数据集版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 单击页面右下角“立即创建”,回退至“数据导入”页面,在该页面可
如文本语料库、百科文章),这些数据覆盖广泛的领域和语言表达方式,帮助模型掌握广泛的知识。 适合广泛应用:经过预训练后,模型可以理解自然语言并具备通用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模型进
平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
0、400、300、250、200、150、100、50hPa高空层次)0点、6点、12点、18点时刻的数据文件,下载步骤示例如下: 注册并登录数据下载平台,在高空变量数据下载链接中: Product type选择Reanalysis。 Variable新选择Geopotential、Specific
s”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency> <groupId>com
获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入应用的调用路径,详见获取调用路径。 填写请求Header参数。 参数名为Content-Type,参数值为application/json。
不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 合成数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保
在平台中,空间资产指的是存储在工作空间中的所有资源,包括数据资产和模型资产。这些资产是用户在平台上进行开发和管理的基础,集中存储和统一管理的方式有助于提升操作效率,并确保资源的规范性与安全性。 数据资产:数据资产是指用户在平台上发布的所有数据集。这些数据集会被存储在数据资产中,用户可以随时查看数据集的详细
行步骤。 应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作流或知识库,响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder”模块,需要在输入框中填写Prompt提示词。
模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,模型来源选择“盘古大模型”。输入模型对应的obs地址和模型名称、选择资源类型、输入资产描述并设置资产可见性后,单击“确定”,启动导入模型任务。 图3 导入模型 父主题: 管理盘古大模型空间资产
门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 清洗文本类数据集 合成文本类数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 合成文本类数据集 标注文本类数据集 为无标签数
中始终保持领先地位。 应用场景灵活 盘古大模型具备强大的学习能力,能够通过少量行业数据快速适应特定业务场景的需求。模型在微调后能够迅速掌握并理解特定行业的专业知识和术语,从而深刻把握行业特性。这种快速学习与适应能力,为各行业企业和机构带来了极大的便利。它们可以根据具体需求,利用盘
以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化能力,能够沉淀行业经验,并更高效、准确地获取信息。 大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字
ratio) 0.067 热身比例(warmup) 0.01 评估和优化模型 模型评估: 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线。本场景的一个Loss曲线示例如下: 图1 Loss曲线 通过观察,该Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证