检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.RC3 驱动 23.0.6 PyTorch 2.2.0 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.RC3 驱动 23.0.6 PyTorch 2.3.0 步骤一:检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
CANN cann_8.0.rc2 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc3 驱动 23.0.6 PyTorch 2.3.1 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc2 驱动 23.0.5 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc2 驱动 23.0.5 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
cann_8.0.RC3 驱动 23.0.6 PyTorch 2.2.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
false:查询数据集版本的所有任务(默认值) return_result 否 Boolean 是否返回任务结果。可选值如下: true:返回任务结果(默认值) false:不返回任务结果 sort_by 否 String 指定查询的排序方式。可选值如下: create_time:按创建时间排序(默认值)
管理模块中,方便下一步调试。 Step3 在Notebook中变更镜像并调试:在Notebook中调试镜像。 Step4 使用调试成功的镜像用于推理部署:将调试完成的镜像导入ModelArts的模型管理中,并部署上线。 Step1 在Notebook中构建一个新镜像 本章节以Mo
单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。
数据校验:通常数据采集后需要进行校验,保证数据合法。 数据校验是指对数据可用性的基本判断和验证的过程。通常,用户采集的数据或多或少都会有很多格式问题,无法被进一步处理。以图像识别为例,用户经常会从网上找一些图片用于训练,但是其质量难以保证,有可能图片的名字、路径、后缀名都不满足训练算法的要求;图片也可能有部分损坏,
pair方式。 Private key file:存放在本地的云上开发环境私钥文件,即在创建开发环境实例时创建并保存的密钥对文件。 单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully
再将结果存储下来,取而代之的是会识别出语句的结构,并在编译时期将数值计算出来而不是运行时去计算(在本例子,结果为2,048,000)。 i = 320 * 200 * 32; AI编译器中,常量折叠是将计算图中预先可以确定输出值的节点替换成常量,并对计算图进行一些结构简化的操作,
实例自动停止的倒计时信息。 name String 实例名称。 pool Pool object 专属池的基本信息,在专属池中创建的实例会返回该字段。 status String 实例状态。枚举值如下: INIT:初始化 CREATING:创建中 STARTING:启动中 STOPPING:停止中
实例自动停止的倒计时信息。 name String 实例名称。 pool Pool object 专属池的基本信息,在专属池中创建的实例会返回该字段。 status String 实例状态。枚举值如下: INIT:初始化 CREATING:创建中 STARTING:启动中 STOPPING:停止中