检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下载地址:https://huggingface.co/benjamin-paine/stable-diffusion-v1-5/tree/main (需登录) 下载stable-diffusion-xl-base-1.0模型包并上传到宿主机上,官网下载地址:https://huggingface
tch。 MiniCPM-2B # git clone 方式下载模型文件,如果已下载忽略此git clone步骤 git clone https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16 # 打patch文件,${work_dir}为工作目录根据实际修改
22[e1000] via P2P/IPC 解决方案2 在程序开头设置“os.environ["NCCL_NET_GDR_LEVEL"] = '0'”关闭使用GDR,或者寻找运维人员将机器添加GDR。 问题现象3 NCCL信息中报出Got completion with error 12, opcode
对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以通过SSH协议远程连接Notebook。 ssh_keys Array of strings S
na。 mkdir -p /home/ma-user/work/grf cd /home/ma-user/work/grf wget https://dl.grafana.com/oss/release/grafana-9.1.6.linux-amd64.tar.gz tar -zxvf
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
3。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
所需要的算力资源和工具链,以及具体的Notebook代码运行示例和最佳实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路:
rate增大的e2e结果变化走势图。 右下图为满足SLO要求下两种模式的吞吐变化曲线。 手动配比调优步骤 跑出一至多个混推实例,并使用脚本绘制各个验证结果。 分析混推图片结果,判断当前实例个数下是否会有收益。调优经验:混推模式下全量能力大于增量能力时,PD分离部署会有收益。 如上图所示为Qwen2
对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以通过SSH协议远程连接Notebook。 ssh_keys Array of strings S
andable_segments:True;允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。开启时可能提升模型性能。报错则关闭。 --model ${container_model_path}:模型地址,模型格式是HuggingFace的目录格式。即上传的Hugg
andable_segments:True;允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。开启时可能提升模型性能。报错则关闭。 --model ${container_model_path}:模型地址,模型格式是HuggingFace的目录格式。即上传的Hugg
见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
Key管理”。 在“API Key管理”页面,单击“创建API Key”,填写描述信息后,单击“确认”会返回“您的密钥”,请复制保存密钥,单击“关闭”后将无法再次查看密钥。 最多支持创建5个密钥,密钥只会在新建后显示一次,请妥善保存。当密钥丢失将无法找回,请新建API Key获取新的访问密钥。
Key管理”。 在“API Key管理”页面,单击“创建API Key”,填写描述信息后,单击“确认”会返回“您的密钥”,请复制保存密钥,单击“关闭”后将无法再次查看密钥。 最多支持创建5个密钥,密钥只会在新建后显示一次,请妥善保存。当密钥丢失将无法找回,请新建API Key获取新的访问密钥。
metrics) trainer.save_state() print('Start to evaluate') # 在验证集上做准确性评估 eva_metrics = trainer.evaluate() trainer.log_metrics("eval"
FlashAttention融合算子,具体约束详见NPU_Flash_Attn融合算子约束 是,配置以下参数。 flash_attn: sdpa 否,配置以下参数关闭。 flash_attn: disabled 是否使用固定句长。 是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。
FlashAttention融合算子,具体约束详见NPU_Flash_Attn融合算子约束 是,配置以下参数。 flash_attn: sdpa 否,配置以下参数关闭。 flash_attn: disabled 是否使用固定句长。 是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。