检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
"400m", "500m"], "under_sea_features": [ "T", "U", "V", "S"]} geo_range:定义了数据覆盖的地理范围,纬度(lat)从-90.0到90.0,经度(lon)从0.0到360.0。 time_range:数据的时间范围,时间戳格式为毫秒数。
存储原始的图片,每张图片命名要求唯一(如abc.jpg)。 Caption:jsonl格式,图片描述jsonl文件放在最外层目录,一个tar包对应一个jsonl文件,文件内容中每一行代表一段文本,具体格式示例如下: {"image_name":"图片名称(abc.jpg)","tar_name":"tar包名称(1
单任务中模糊的指示也会取得较好的效果,但对于规则越复杂的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。 指标看板
增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的宣传文案。”、“你是一个财务分析师,请分析上述财务指标的趋势。” 父主题: 提示词写作进阶技巧
可以通过重试机制解决,在代码里检查返回值,碰到这个并发错误可以延时一小段时间(如2-5s)重试请求;也可以后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 请与技术支持确认,API是否已完成部署。 APIG.0301 Incorrect IAM authentication
"text": "故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古
或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。 温度 用于控制生成结果的随机性,取值范围0-1。 调高温度,会使得模型的输出更多样性和创新性。
这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量
未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。 414
为什么微调后的盘古大模型总是重复相同的回答? 盘古大模型是否可以自定义人设? 更多 大模型概念类 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面? 更多 大模型使用类 盘古大模型是否可以自定义人设? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优?
份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。 获取Token方法: Toke
xx问题,请给我具体的xxx问题,以便我更好地解答。” 复述任务要求 可以让模型复述prompt中的要求,考察模型是否理解。 比如“现在有一个xxx任务,我会给你xxx,你需要xxxx。\n\n现在你充分理解这个任务了吗?详细解释一遍,不用举例子/请举例说明。” 父主题: 提示词写作进阶技巧
问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助手为例进行说明。该场景通过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。 图1 政务问答智能助手整体框架 上图给出了政务问答智能助手的
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到
数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式,确保不同业务场景下的数据获取需求得到满足。 数据加工:平台提供强大的数据加工功能,涵盖数据清洗
杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。
单击Postman界面“Send”,发送请求。科学计算大模型API调用成功后,会返回任务id参数task_id,可获取任务ID参数值。 在Postman中新建一个GET请求,填入域名(将步骤2中获取的URL去除末尾的“/tasks”即为该域名),设置请求Header参数和任务ID参数。单击Postm
型进行部署。 如果使用全球中期降水预测模型,需要选择1个平台预置好的全球中期降水预测模型,并选择对应的全球中期天气要素预测模型。并且至少有一个中期天气要素模型时间分辨率要小于等于降水模型时间分辨率。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。