检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发布数据集 刚创建的数据集在未发布状态下,无法应用于模型训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作
压缩盘古大模型 N2基础功能模型、N4基础功能模型、经有监督微调训练以及RLHF训练后的N2、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后
训练数据集创建流程 数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
监听Agent(Java SDK) 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听。 AgentListener的定义如下: public interface AgentListener { /** *
安装SDK(Java SDK) Maven中央仓导入 在项目pom.xml中参考以下方式添加依赖。 <dependency> <groupId>com.huaweicloud</groupId> <artifactId>pangu-kits-app-dev-java
安装Ascend插件 详情请参考官方文档:https://www.hiascend.com/document/detail/zh/mindx-dl/50rc1/dluserguide/clusterscheduling/dlug_scheduling_02_000001.html
边缘部署准备工作 本指南的边缘部署操作以largemodel集群为例,示例集群信息如下表。 表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge
启用盘古大模型搜索增强能力 大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,并将这些信息整合到大模型生成的答案中
监听Agent(Python SDK) 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent
配置SDK(Java SDK) 基础配置项 SDK依赖的配置项主要通过读取llm.properties配置文件;如果配置文件名不为llm.properties,需要在项目中主动设置,方法如下: 在resources路径下,创建llm.properties文件,并根据实际需要配置相应的值
获取API认证鉴权信息(获取Token) 登录“我的凭证 > API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装
配置SDK(Python SDK) 基础配置项 SDK依赖的配置项主要通过加载llm.properties配置文件。 在项目路径下,创建llm.properties文件,并根据实际需要配置相应的值。 在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置
运行Agent(Java SDK) 在给出的示例中,Agent中预置了2个工具,分别为: meeting_room_status_query:查询会议室的状态,是否被预订或者正在使用中。 reserve_meeting_room:预订会议室。 单轮执行: 调用run接口运行一个Agent
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为