检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行事务Cypher 功能介绍 执行事务Cypher。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/transaction/{commit} 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String
点集最短路(Shortest Path of Vertex Sets) 概述 点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。 适用场景 点集最短路算法(Shortest Path of Vertex Sets)适用于互联网社交
客户端连接参数 在进行了上述客户端初始化认证方式后,您可根据需要进行HTTP配置。 HTTP配置 您可根据以下代码进行配置: import com.huaweicloud.sdk.core.http.HttpConfig; // 默认配置 HttpConfig config
如果点被删除了,基于该点的边会怎么处理? GES基于属性图(Property graph)模型导入图数据,一个属性图是由点、边、标签(Label)和属性(Property)组成的有向图。 点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。
带过滤全最短路径(filtered_all_shortest_paths)(2.2.17) 参数说明 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起点ID String - - - target 是 终点ID String -
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度
应用场景 GES服务适用于互联网应用、知识图谱应用、社交网络、金融风控应用、城市工业应用、企业IT应用等场景。 互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯
聚类系数算法(cluster_coefficient) 功能介绍 根据输入参数,执行cluster_coefficient算法。 聚类系数算法(cluster_coefficient)用于计算图中节点的聚集程度。 URI POST /ges/v1.0/{project_id}/hyg
点集全最短路(All Shortest Paths of Vertex Sets) 概述 点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析
点集共同邻居(Common Neighbors of Vertex Sets) 概述 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友
单点环路检测(Single Vertex Circles Detection) 概述 单点环路检测(Single-Vertex-Circles-Detection)是一个经典的图问题,意在寻找图中的环路。环路上的点较好地体现了该点的重要性。 适用场景 单点环路检测适用于交通运输、金融风控等场景
点集最短路(Shortest Path of Vertex Sets)(1.0.0) 表1 Parameter参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana
点集共同邻居(common_neighbors_of_vertex_sets) 功能介绍 根据输入参数,执行点集共同邻居算法。 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象
点集最短路(shortest_path_of_vertex_sets) 功能介绍 根据输入参数,执行点集最短路算法。 点集最短路(shortest_path_of_vertex_sets)用于发现两个点集之间的最短路径。 URI POST /ges/v1.0/{project_id
点集最短路(shortest_path_of_vertex_sets) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 起点ID集合 List 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于
点集共同邻居(common_neighbors_of_vertex_sets) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources(2.2.6) 是 起点ID集合 List 标准csv格式,ID之间以英文逗号分隔,例如:["Alice"
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin
带过滤全最短路径(Filtered All Shortest Paths) 概述 带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘
点集共同邻居(common_neighbors_of_vertex_sets)(2.2.13) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources(2.2.6) 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如
点集最短路(shortest_path_of_vertex_sets)(2.1.5) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","