已找到以下 10000 条记录
  • 深度学习-语义数据

    VOC一致;ADE20K_MIT:一个场景理解的新的数据,这个数据可以免费下载的,共151个类别。数据有很多,本系列教程不局限于具体数据,可能也会用到Kaggle比赛之类的数据,具体每个数据怎么处理,数据的格式是什么样的,后续文章用到什么数据集会具体讲解。

    作者: @Wu
    729
    0
  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21

  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练有替换采样构造k 个不同的数据,然后在训练 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1253
    2
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    839
    2
  • 浅谈深度学习

    处理领域,深度学习技术可以自动理解语言的结构和含义。这是因为深度学习模型可以从文本中提取特征,例如词汇、语法结构和语义等。然后,这些特征可以被用于理解文本的含义和结构。在机器人控制领域,深度学习技术可以帮助机器人识别和理解环境,并进行自主决策。这是因为深度学习模型可以从图像和语音

    作者: 运气男孩
    23
    3
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1676
    3
  • 什么是深度学习

    也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程

    作者: 角动量
    1546
    5
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络

    作者: 运气男孩
    1268
    3
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    811
    1
  • 分页查询智能任务列表 - AI开发平台ModelArts

    导出新数据的名称。 export_new_dataset_work_path String 导出新数据的工作目录。 ratio_sample_usage Boolean 指定切分比例后,是否按指定比例随机分配训练-验证。可选值如下: true:主动随机分配训练-验证 fal

  • 深度学习概念

    深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)

    作者: QGS
    973
    3
  • 深度学习前景

    为众所周知的“深度学习’’。这个领域已经更换了很多名称,它反映了不同的研究人员和不同观点的影响。全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控

    作者: G-washington
    1665
    1
  • 深度学习导论

    开始投入资源进行深度学习的研究和应用。深度学习的用途非常广泛,如下图4.1 物体分类4.1.1 一般物体分类CIFAR和ILSVRC2012等数据是计算机视觉领域中常用的数据,用于训练各种图像分类和识别模型。这些数据具有各自的特点和挑战,被广泛应用于深度学习和计算机视觉算法

    作者: 林欣
    41
    1
  • 分享深度学习发展的学习范式——混合学习

    Network)在MNIST数据上仅使用25个训练样本,就达到了90%以上的准确率。半监督学习学习专门为了那些有打大量无标注样本和少量有标注样本的数据。传统来说, 监督学习是使用有标注的那一部分数据,而无监督学习则采用另外无标注的一部分数据, 半监督学习模型可以将有标注数据和从无标注

    作者: 初学者7000
    740
    1
  • EI企业智能开发者课程

    学练考证一站式学习 一站式服务:课程学习,云端实验,考试认证,不用学习断腿” 一站式服务:课程学习,云端实验,考试认证,不用学习断腿” 精选课程 语言及概念基础 入门 AI 开发需要掌握的 Python 语言知识,了解 AI 发展历程及行业应用,学会进行 AI 应用的学习 共3个课程

  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 分享深度学习发展的学习范式——混合学习

    Network)在MNIST数据上仅使用25个训练样本,就达到了90%以上的准确率。半监督学习学习专门为了那些有打大量无标注样本和少量有标注样本的数据。传统来说, 监督学习是使用有标注的那一部分数据,而无监督学习则采用另外无标注的一部分数据, 半监督学习模型可以将有标注数据和从无标注

    作者: 初学者7000
    829
    3