已找到以下 10000 条记录
  • 分享深度学习发展的学习范式——混合学习

    Network)在MNIST数据上仅使用25个训练样本,就达到了90%以上的准确率。半监督学习学习专门为了那些有打大量无标注样本和少量有标注样本的数据。传统来说, 监督学习是使用有标注的那一部分数据,而无监督学习则采用另外无标注的一部分数据, 半监督学习模型可以将有标注数据和从无标注

    作者: 初学者7000
    829
    3
  • 深度学习导论

    开始投入资源进行深度学习的研究和应用。深度学习的用途非常广泛,如下图4.1 物体分类4.1.1 一般物体分类CIFAR和ILSVRC2012等数据是计算机视觉领域中常用的数据,用于训练各种图像分类和识别模型。这些数据具有各自的特点和挑战,被广泛应用于深度学习和计算机视觉算法

    作者: 林欣
    41
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习之数据增强

    让机器学习模型泛化得更好的最好办法是使用更多的数据进行训练。当然,在实践中,我们拥有的数据量是很有限的。解决这个问题的一种方法是创建假数据并添加到训练集中。对于一些机器学习任务,创建新的假数据相当简单。对分类来说这种方法是最简单的。分类器需要一个复杂的高维输入 x,并用单个类别标识

    作者: 小强鼓掌
    929
    6
  • 在哪里可以进行课程学习? - 华为云开发者学堂

    在哪里可以进行课程学习? 开发者认证订单支付完成后,点击“返回我的云市场”,回到“我的开发者认证”个人中心,进行对应开发者认证学习。如图1 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的开发者认证”,进行对应开发者认证学习。如图2 图2

  • 深度学习的训练,验证,测试

    据量过百万的应用,训练可以占到99.5%,验证和测试各占0.25%,或者验证占0.4%,测试占0.1%。 总结一下,在机器学习中,我们通常将样本分成训练,验证和测试三部分,数据规模相对较小,适用传统的划分比例,数据规模较大的,验证和测试要小于数据总量的20%

    作者: 运气男孩
    2219
    7
  • 各个模型深度学习训练加速框架的选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据的训练。D

  • 深度学习之构建机器学习算法

    等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w) =

    作者: 小强鼓掌
    830
    3
  • 深度学习之构建机器学习算法

    等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数

    作者: 小强鼓掌
    525
    1
  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习和非监督学习之间的界限。由于缺少标签数据和收集标签数据的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    929
    1
  • 浅谈深度学习

    学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用

    作者: QGS
    39
    2
  • 深度学习简介

    信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation

    作者: 某地瓜
    1681
    1
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6641
    0
  • 深度学习随机取样、学习

    值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方法就是,选择不受数据大小影响的

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方法就是,选择不受数据大小影响的

    作者: 运气男孩
    1444
    5
  • 深度学习应用开发》学习笔记-09

    一种数据结构,具体来说是多维数组(通过.numpy()来得到)。我的理解它的表现形式可以是,一个单独的数/标量,或一个一维数组/向量,一个二维数组/矩阵,或三维四维多维等等。形式上来统一化,可以叫做:0阶张量/标量/Scalar, 1阶张量/向量/vector, n阶张量/n维数

    作者: 黄生
    1745
    3
  • 深度学习应用开发》学习笔记-12

    scatter(x_data,y_data)画上帝视角已学习到的的线性函数直线:plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)今天先到这里了。另外发现jupyter里面可以TAB代码补全,可以有很多快捷键方便操作,以前是我孤陋寡闻井底之蛙了

    作者: 黄生
    1024
    2
  • 深度学习应用开发》学习笔记-03

    有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,

    作者: 黄生
    1332
    6