已找到以下 10000 条记录
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习计算服务平台

    深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据、AI模型与算力等。

  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”

    作者: 小强鼓掌
    736
    1
  • 机器学习深度学习

    业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该

    作者: QGS
    678
    2
  • 深度学习学习 XOR

    发挥作用的一个简单例子说起:学习 XOR 函数。       XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数

    作者: 小强鼓掌
    944
    3
  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21

  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习学习

    1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就

    作者: 小强鼓掌
    452
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    347
    1
  • “智能基座”产教融合协同育人基地

    力。 通过课后实践、创新实践课等,把知识转化为动手能力。 学练考证一站式学习 一站式服务:课程学习、沙箱实验、考试认证。 一站式服务:课程学习、沙箱实验、考试认证。 精选课程 体系化的培训课程,快速完成学习覆盖,让您轻松上云 鲲鹏主题课程 昇腾主题课程 《数据库》课程方案 1 方案介绍

  • 《Keras深度学习实战》—2.4 MNIST数据

    2.4 MNIST数据MNIST是一个包含60 000个0~9这十个数字的28×28像素灰度图像的数据。MNIST也包括10 000个测试图像。数据包含以下四个文件:train-images-idx3-ubyte.gz:训练图像(9 912 422字节),见http://yann

    作者: 华章计算机
    发表时间: 2019-06-15 12:20:24
    7582
    0
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    813
    2
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习应用开发学习

    件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它在日常生活中的广泛应用,比如超市货架的商品

    作者: 黄生
    22
    0
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    627
    1
  • 深度学习-语义数据

    VOC一致;ADE20K_MIT:一个场景理解的新的数据,这个数据可以免费下载的,共151个类别。数据有很多,本系列教程不局限于具体数据,可能也会用到Kaggle比赛之类的数据,具体每个数据怎么处理,数据的格式是什么样的,后续文章用到什么数据集会具体讲解。

    作者: @Wu
    727
    0